Механизм электромеханического сопряжения теория скольжения. Феномен электромеханического сопряжения

Электромеханическое сопряжение - это цикл последовательных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом мышцы.

Основная особенность электронных учебных пособий состоит в сочетании необходимого и специально подобранного теоретического материала, дополняющего печатные издания с большим числом разнообразных, тщательно проработанных тестов.

Многофункциональное электронное учебное пособие предназначено для самостоятельного освоения учебного курса, получения навыков практического применения знаний, для автоматизации и интеллектуализации прикладных задач. Ориентация системы тестирования на личностные качества обучаемых позволяет определить индивидуальные особенности обучающегося и, в соответствии с этим, рекомендовать методику обучения, которая позволит оптимизировать процесс получения знаний.

Нарушение последовательности процессов сопряжения может приводить к патологиям и даже к летальному исходу. Основные этапы этого процесса можно проследить по схеме рисунок 11.

Рисунок 11 Схема электромеханического сопряжения в кардиомиоците (М - клеточная мембрана-сарколемма, СР - саркоплазматический ретикулум, МФ - миофибрилла, Z - z-диски, Т - Т-система поперечных трубочек); 1 - поступления Na+ и 2 - поступления Са2+ в клетку при возбуждении мембраны, 3 - "кальциевый залп", 4 - активный транспорт Са2+ в СР, 5 - выход из клетки К+, вызывающий реполяризацию мембраны, 6 -- активный транспорт Са2+ из клетки

Процесс сокращения кардиомиоцита происходит следующим образом (номера пунктов в тексте соответствуют номерам процессов в схеме электромеханического сопряжения на рисунок 11):

  • 1 - при подаче на клетку стимулирующего импульса открываются быстрые (время активации 2 мс) натриевые каналы, ионы Na+ входят в клетку, вызывая деполяризацию мембраны;
  • 2 - в результате деполяризация плазматической мембраны в ней и в Т-трубочках открываются потенциал-зависимые медленные кальциевые каналы (время жизни 200 мс), и ионы Са2+ поступают из внеклеточной среды, где их концентрация 2 * 10-3 моль / л, внутрь клетки (внутриклеточная концентрация Са2+ 10-7 моль /л);
  • 3 - кальций, поступающий в клетку, активирует мембрану СР, являющегося внутриклеточным депо ионов Са2+ (в СР их концентрация достигает = 10"3 моль/л), и высвобождает кальций из пузырьков СР, в результате чего возникает так называемый «кальциевый залп». Ионы Са2+ из СР поступают на актин-миозиновый комплекс МФ, открывают активные центры актиновых цепей, вызывая замыкание мостиков и дальнейшее развитие силы и укорочения саркомера;
  • 4 - по окончании процесса сокращения миофибрилл ионы Са2+ с помощью кальциевых насосов, находящихся в мембране СР, активно заканчиваются внутрь саркоплазматического ретикулума;
  • 5 - процесс электромеханического сопряжения заканчивается тем, что К+ пассивно выходит из клетки, вызывая реполяризацию мембраны;
  • 6 - ионы Са2+ активно выводятся во внеклеточную среду с помощью кальциевых насосов сарколеммы.

Таким образом, в кардиомиоците электромеханическое сопряжение идет в две ступени: вначале небольшой входящий поток кальция активирует мембраны СР, способствуя большему выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера. Описанный выше двухступенчатый процесс сопряжения доказан экспериментально. Опыты показали, что: а) отсутствие потока кальция извне клетки jCa прекращает сокращение саркомеров, б) в условиях постоянства количества кальция, высвобождаемого из СР, изменение амплитуды потока кальция приводит к хорошо коррелирующему изменению силы сокращения.

Следует отметить, что не во всех мышечных клетках организма процесс сопряжения происходит, как в кардиомиоците. Так, в скелетных мышцах теплокровных потенциал действия короткий (2-3 мс) и медленный поток ионов кальция в них отсутствует. В этих клетках сильно развита Т-система поперечных трубочек, подходящих непосредственно к саркомерам близко к z-дискам (см. рисунок 11). Изменения мембранного потенциала во время деполяризации через Т-систему, вызывая залповое высвобождение ионов Са2+ и дальнейшую активацию сокращения (3, 4, 5).

Временной ход описанных процессов показан на рисунок 12.

Общим для любых мышечных клеток является процесс освобождения ионов Са2+ и внутриклеточных депо - саркоплазматического ретикулума и дальнейшая активация сокращения. Ход кальциевого выброса из СР экспериментально наблюдается с помощью люминесцирующего в присунокутствии ионов Са2+ белка экворина, который был выделен из светящихся медуз. Задержка начала развития сокращения в скелетных мышцах составляет 20 мс, а в сердечной - несколько больше (до 100 мс).

Рисунок 12 Временное соотношение между потенциалом действия кардиомиоцита (а) и одиночным сокращением (б) в этих клетках. Ордината слева - мембранный потенциал, справа - сила. - потенциал покоя

Соотношение между временным ходом потенциала действия в мышечном волокне и возникающим в результате этого сокращением мышечного волокна с последующим его расслаблением.

Электромеханическое сопряжение

Это последовательность процессов, в результате которых потенциал действия плазматической мембраны мышечного волокна приводит к запуску сокращения мышцы или к так называемому циклу поперечных мостиков, который будет продемонстрирован далее.

Плазматическая мембрана скелетных мышц электрически возбудима и способна генерировать распространяющийся потенциал действия посредством механизма, аналогичного тому, который действует в нервных клетках. Потенциал действия в волокне скелетной мышцы длится 1-2 мс и заканчивается раньше, чем появятся какие-либо признаки механической активности (рис. 12 ). Начавшаяся механическая активность может продолжаться более 100 мс. Электрическая активность плазматической мембраны не оказывает прямого влияния на сократительные белки, а вызывает повышение цитоплазматической концентрации ионов Са 2+ , которые продолжают активировать сократительный аппарат и после прекращения электрического процесса.

Что представляет собой сопряжение возбуждения и сокращения (ВС сопряжение)?

Запуск нервным импульсом сокращения скелетной мышцы. При нормальных условиях скелетная мышца в покое слегка натянута. Это свидетельство минимального или слабого связывания актина с миозином. Нервный импульс, достигший терминального нервного окончания, передается на ацетилхолиновый рецептор. В скелетной мышце этот рецептор представлен специализированным образованием, которое называется двигательной концевой пластинкой. Двигательная концевая пластинка представляет собой участок сарколеммы с множеством складок, расположенный в непосредственной близости от нервного окончания. Выделенный нервным окончанием ацетилхолин диффундирует через синаптическую щель и связывается с рецепторами, расположенными на многочисленных складках постсинаптической мембраны (концевой пластинки сарколеммы). Лиганд-рецепторное взаимодействие повышает проницаемость мембраны для натрия, что вызывает местную деполяризацию (потенциал действия концевой пластинки). Потенциал действия концевой пластинки распространяется по сарколемме в разных направлениях и проводится по Т-тру-бочкам внутрь мышечного волокна. Деполяризация триады (концевая цистерна, Т-трубочка и СР) вызывает высвобождение во внутриклеточную жидкость депонированных в СР ионов кальция. При наличии высокой концентрации ионов кальция и достаточного количества энергии запускается цикл поперечных мостиков. Гидролиз вновь синтезированных молекул АТФ реактивирует миозиновые головки, которые присоединяются к другим активным участкам молекулы миозина. Циклическая работа поперечных мостиков продолжается до тех пор, пока имеются свободные ионы кальция и достаточное количество АТФ.

Рис.13. Модель скользящих нитей.

Что такое теория скользящих нитей?

Эта теория объясняет, каким образом фиксированные толстые и тонкие филаменты перемещаются друг относительно друга и обеспечивают сокращение саркомера. Перемещение, происходящее во время цикла поперечных мостиков, обусловлено скольжением молекулы актина по миозину. Повторяющееся присоединение и отделение ряда поперечных мостиков приводит к тому, что параллельно расположенные филаменты скользят друг по другу, сокращая тем самым расстояние между двумя соседними г-линиями. Таким образом саркомер укорачивается. Сокращение саркомера приводит к возникновению некоторой силы.

Модель скользящих нитей

Во время генерирования силы, укорачивающей мышечное волокно, перекрывающиеся толстые и тонкие филаменты каждого саркомера, подтягиваемые движениями поперечных мостиков, сдвигаются друг относительно друга. Длина толстых и тонких филаментов при укорочении саркомера не изменяется (рис. 13 ). Этот механизм мышечного сокращения известен как модель скользящих нитей.

Электромеханическое сопряжение – то цикл последовательных процессов, который начинается с возникновения потенциала действия на сарколемме и заканчивается сократительным ответом мышцы.

Общепринятой моделью мышечного сокращения является модель скользящих нитей, согласно которой сократительный процесс происходит следующим образом.

Под действием нервного импульса в сарколемме открываются натриевые каналы, и ионы Na + входят в мышечную клетку, вызывая возбуждение (деполяризацию) сарколеммы.

Электрохимически процесс возбуждения передается на саркоплазматической ретикулум. В результате повышается проницаемость этой мембранной структуры для ионов Са ++ и происходит их выброс в цитоплазматическую жидкость (саркоплазму), заполняющую мышечное волокно. Повышение концентрации Са ++ с 10 –7 до 10 –5 моль/л стимулирует циклическую работу миозиновых «мостиков». «Мостик» связывается с актином и тянет его к центру А -зоны, в область расположения миозиновых нитей, перемещая на расстояние 10–12 нм. Затем он отщепляется от актина, связывается с ним в другой точке и опять подтягивает в нужную сторону. Непрерывное движение актиновных нитей происходит в результате поочередной работы «мостиков». Частота циклов их движений, по-видимому, регулируется в зависимости от нагрузки на мышцу и может достигать 1000 Гц. «Мостики» обладают АТФ-азной активностью, стимулируют расщепление АТФ и используют высвобождающуюся при этом энергию для своей работы.

Возвращение мышцы к исходному состоянию обусловлено обратными переходами ионов Са ++ из саркоплазмы в ретикулум вследствие работы кальциевых насосов и тем, что К + пассивно выходит из мышечной клетки, вызывая реполяризацию саркоплемы.

Механическое усилие, развиваемое мышцей при сокращении, зависит от величины еë поперечного сечения, от начальной длины волокон и ряда других факторов. Сила мышцы, приходящаяся на 1 см 2 её поперечного сечения, называется абсолютной мышечной силой. Для человека она изменяется в пределах 50–100 . Сила одних и тех же мышц человека зависит от ряда физиологических условий: возраста, пола, тренированности и т. д. Следует также отметить. Что в разных мышечных клетках организма процесс сопряжения происходит несколько по-разному. Например, задержка начала сокращения по отношению к началу возбуждения сарколеммы в скелетных мышцах составляет 20 мс, в сердечной – несколько больше (до 100 мс).


* Если молекула или часть молекулы имеют неравный нулю дипольный момент или электрический заряд, то их называют полярными

Связь между возбуждением и сокращением мышечного волокна описана А.Хаксли (1959). Осуществляется при помощи системы поперечных трубочек поверхностной мембраны (Т-системы) и внутриволоконного саркоплазматического ретикулума. Деполяризация, вызываемая потенциалом действия, распространяется на Т - систему и стимулирует освобождение ионов кальция из полостей ретикулума. Взаимодействие ионов кальция с регуляторным белком тропонином С приводит к активации системы сократительных белков актина и миозина. Механизм генерации потенциала действия принципиально не отличается от этого процесса в нейроне. Скорость его распространения по мембране мышечного волокна 3 - 5 м/c.

5. Режимы и виды сокращения мышц

Режимы сокращения мышцы: изотонический (когда мышца укорачивается при неизменном внутреннем напряжении, например, при нулевой массе поднимаемого груза) и изометрический (при этом режиме мышца не укорачивается, а лишь развивает внутреннее напряжение, что бывает при нагрузке неподъёмным грузом). Ауксотонический режим - при сокращении мышцы с нагрузкой вначале в мышце возрастает напряжение без укорочения (изометрический режим), затем, когда напряжение преодолевает массу поднимаемого груза, укорочение мышцы происходит без дальнейшего роста напряжения (изотонический режим).

Различают виды сокращений: одиночное и тетаническое. Одиночное сокращение возникает при действии на мышцу одиночного нервного импульса или однократного толчка тока. В миоплазме мышцы происходит кратковременный подъём концентрации кальция, сопровождаемый кратковременной работой - тягой миозиновых мостиков, сменяющейся покоем. В изометрическом режиме одиночное напряжение начинается через 2 мс после развития потенциала действия, причём напряжению предшествует кратковременное и незначительное латентное расслабление.

Тетанус - это сложное сокращение, возникающее при стимуляции с частотой выше, чем длительность одиночного мышечного сокращения. Тетанус бывает зубчатый, если мышца совершает незначительные колебания на высоте амплитуды сокращения, и гладкий - при постоянном во времени сокращении. При относительно малой частоте раздражений возникает зубчатый тетанус, при большой частоте - гладкий тетанус. Чем быстрее сокращаются и расслабляются волокна мышцы, тем чаще должны быть раздражения, чтобы вызвать тетанус.

В естественных условиях мышечные волокна работают в режиме одиночного сокращения только тогда, когда длительность интервала между разрядами мотонейронов равна или превышает длительность одиночного сокращения иннервируемых данным мотонейроном мышечных волокон. В режиме одиночного сокращения мышца способна работать длительное время без утомления, совершая при этом минимальную работу. При увеличении частоты разрядов развивается тетаническое сокращение. При зубчатом тетанусе происходит непрерывное нарастание силы сокращения и выполняемой работы. Во время гладкого тетануса мышечное напряжение не изменяется, а поддерживается на достигнутом уровне. В таком режиме мышца человека работает при развитии максимальных изометрических усилий. Работа мышцы (А) измеряется произведением массы груза (Р) и расстояния (H), на которое этот груз перемещается.

Работа может быть динамической (преобладают изотонические режимы сокращения) или статической. Она может быть преодолевающей и уступающей.

Расслабление мышцы.

Восстановление потенциала покоя мембраны прекращает поступление из саркоплазматического ретикулума ионов кальция и дальнейший сократительный процесс. Кальций в миоплазме активирует Са-АТФ-азу, кальциевый насос осуществляет активный перенос этого иона в саркоплазматический ретикулум. Возврат мышцы в исходное, растянутое положение определяется массой костей скелета, связанных с данными мышцами и создающими растягивающее усилие после прекращения процесса сокращения. Вторым моментом является упругость мышцы, которая преодолевается в момент сокращения. Структурной основой упругости мышцы являются:

Поперечные мостики.

Участки прикрепления концов миофибрилл к сухожильным элементам мышечного волокна.

Наружные соединительнотканные элементы мышцы и её волокна.

Места прикрепления мышц к костям.

Продольная система саркоплазматического ретикулума.

Сарколемма мышечного волокна.

Капиллярная сосудистая сеть мышцы.

Электромеханическое сопряжение - это цикл последовательных процессов, начинающийся с возникновения потенциала действия ПД на сарколемме (клеточной мембране) и заканчивающийся сократительным ответом мышцы.

Нарушение последовательности процессов сопряжения может приводить к патологиям и даже к летальному исходу.

Процесс сокращения кардиомиоцита происходит в следующем порядке:

1) при подаче на клетку стимулирующего импульса открываются быстрые (время активации 2 мс) натриевые каналы, ионы Na + входят в клетку, вызывая деполяризацию мембраны;

2) в результате деполяризация мембраны открываются потенциал-зависимые медленные кальциевые каналы (время жизни 200 мс), и ионы Са 2+ поступают из внеклеточной среды, где их концентрация ≈ 2 ∙10 3 моль / л, внутрь клетки (внутриклеточная концентрация Са 2+ ≈10-7 моль / л);

3) кальций, поступающий в клетку, активирует мембрану СР, являющегося внутриклеточным депо ионов Са 2+ (в СР их концентрация достигает более 10 -3 моль/л), и высвобождают кальций из пузырьков СР. В результате возникает так называемый «кальциевый залп». Ионы Са 2+ из СР поступают на актин-миозиновый комплекс саркомера, открывают активные центры актиновых цепей, вызывая замыкание мостиков и дальнейшее развитие силы и укорочения саркомера;

4) по окончании процесса сокращения миофибрилл ионы Са 2+ с помощью кальциевых насосов, находящихся в мембране СР, активно закачиваются внутрь саркоплазматического ретикулума;

5) процесс электромеханического сопряжения заканчивается тем, что ионы Na + и Са 2+ - активно выводятся во внеклеточную среду с помощью соответствующих ионных насосов.

Пассивные потоки 1,2 и 3 обеспечивают процесс сокращения мышцы, а активные потоки 4 и 5 - ее расслабление.

Таким образом, в кардиомиоците электромеханическое сопряжение идет в две ступени: вначале небольшой входящий поток кальция активирует мембраны СР, способствуя большему выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера. Заметим, что описанный выше двухступенчатый процесс сопряжения доказан экспериментально.

Опыты показали, что: а) отсутствие потока кальция извне клетки I прекращает сокращение саркомеров, б) в условиях постоянства количества кальция, высвобождаемого из СР, изменения амплитуды потока приводит к хорошо коррелирующему изменению силы сокращения. Поток ионов Са 2+ внутрь клетки выполняет, таким образом, две функции: формирует длительное (200 мс) плато потенциала действия кардиомиоцита и участвует в процессе электромеханического сопряжения.

3. Цель деятельности студентов на занятии:

Студент должен знать:

1.Структуру мышцы.

2.Основные положения модели скользящих нитей.

3.Трехкомпонентную модель Хилла.

4.Изометрический и изотонический режимы исследования характеристик сокращающихся мышц.

5.Механизм электромеханического сопряжения в мышцах.

Студент должен уметь:

1. Объяснять модель скользящих нитей.

2. Объяснять трехкомпонентную модель Хилла.

3. Анализировать уравнение Хилла.

4. Объяснять процесс сокращения кардиомицита.

5. Решать ситуационные задачи по данной теме.

1. Структура мышцы. Саркомер.

2. Модель скользящих нитей.

3. Пассивное растяжение мышцы. Трехкомпонентная модель Хилла.

4. Активное сокращение мышцы.

5. Уравнение Хилла.

6. Мощность одиночного сокращения.

7. Электромеханическое сопряжение.

8. Решение ситуационных задач.

5. Перечень вопросов для проверки исходного уровня знаний:

1. Что является элементарной сократительной единицей мышечной ткани?

2. Опишите микроструктуру саркомера.

3. Что является механохимическим преобразователем энергии АТФ?

4. Как осуществляется процесс укорочения и генерации силы в саркомере? Каковы основные положения модели скользящих нитей?

5. Почему для исследования процесса сокращения мышцы приходиться разделять режимы ее работы на изотонический и изометрический? Какой режим реализуется в реальных условиях сокращения?

6.Что понимают под электромеханическим сопряжением? Какие фазы электромеханического сопряжения в кардиомиоците и в скелетной мышце осуществляются пассивными потоками ионов, а какие активными?

6. Перечень вопросов для проверки конечного уровня знаний:

1. Охарактеризуйте трехкомпонентную модель Хилла.

2. Объясните механизм активного сокращения мышцы.

3. Почему при различных начальных длинах мышцы изометрическое сокращение имеет различную форму зависимости F(t)?

4. Можно ли по кривой зависимости V(Р) Хилла (рис. 7) определить, какой максимальный груз может удерживать мышца?

5. Опишите процесс сокращения кардиомицита.

7.Решите задачи:

1.Сухожилие длиной 16 см под действием силы 12,4 Н удлиняется на 3,3 мм. Сухожилие можно считать круглым в сечении с диаметром 8,6 мм. Рассчитайте модуль упругости этого сухожилия.

2.Площадь сечения бедренной кости человека равна 3 см 2 . Какую силу сжатия может выдержать кость, не разрушаясь?

3.Для определения механических свойств костной ткани была взятапластинка из свода черепа со следующими размерами: длина L = 5 см, ширина b = 1 см, толщина h = 0,5 см. Под действием силы F = 200 Н пластинка удлинилась на ∆L = 1,2∙10 -3 см. Определите по этим данным модуль Юнга костной ткани при деформации растяжения.

4.Из большеберцовой кости собаки вырезали стержень прямоугольного сечения с ребрами а = 2 мм, b = 5 мм. Стержень положили на упоры, находящиеся на расстоянии L = 5 см друг от друга, и посередине между ними к нему приложили силу 28 Н. При этом стрела прогиба оказалась равной 1,5 мм. Определите модуль Юнга для этой кости.

8. Самостоятельная работа студентов:

По учебнику Антонова В.Ф. и др. (§§ 20.4.) изучите временное соотношение между потенциалом действия кардиомицита и одиночным сокращением.

9. Хронокарта учебного занятия:

1. Организационный момент – 5 мин.

2. Разбор темы – 30 мин.

3. Решение ситуационных задач – 60 мин.

4. Текущий контроль знаний – 30 мин

5. Подведение итогов занятия – 10 мин.

10. Перечень учебной литературы к занятию:

1.Ремизов А.Н. Максина А.Г., Потапенко А.Я. Медицинская и биологическая физика. М., «Дрофа», 2008, §§ 8.3, 8.4.