Искусственные мускулы. Сравнение с естественными мышцами

Учеными из Национального университета Сингапура был создан новый тип искусственных мускулов, чьи показатели впечатлили коллег. Дело в том, что этот новый тип мускулов может растягиваться в пять раз, если учитывать их начальную длину, а вес, который они могут поднимать, превосходит их собственный в 80 раз.

Цель данной разработки обеспечить роботов удивительными силовыми характеристиками и при этом обеспечить наличие пластики как у человека.

По словам доктора Адриана Кох, который на данный момент является руководителем программы, полученный материал имеет структуру, схожую с мышечными тканями живых организмов.

Основной же интерес вызывает то, что, не смотря на свою силу, пластику и гибкость, эти искусственные мышцы реагируют на электрические управляющие импульсы в течение долей секунды, а это, несомненно, колоссальный результат.

Так, например, на данный момент подобного эффекта не может обеспечить никакая механика или гидравлика. Как рассказывает глава группы, если оснастить роботов данными быстродействующими искусственными мускулами, то тогда можно будет избавиться от механических движений роботов и приблизиться к «пластическим» показателям человека или различных животных. При всем этом, выносливость, сила и точность движений должны превосходить человеческие во много раз.

Данный материал представляет собой сложный композит, который, в свою очередь, состоит из различных полимеров. Используя в данном составе материала эластичные полимеры со способностью растягиваться в 10 раз и полимеров, способных выдерживать вес в 500 раз превышающий свой собственный, позволили добиться таких удивительных результатов. Как сообщают ученые – работа над разработкой будет длиться еще не один год, а в течение нескольких лет, планируется создать несколько видов конечностей для роботов, которые оснастят данным видом искусственных мускулов. Интересно то, что конечность будет иметь вес и размер в два раза меньше человеческого аналога, однако шансов на победу у человека будет не много.

Несмотря на то, что данная разработка является наиболее интересной для группы ученых именно в этой сфере, параллельно они планируют использовать полученный материал для иных целей. Так, например, новый материал способен выполнять превращение механической энергии в электрическую энергию и наоборот. И поэтому ученые параллельно занимаются разработкой конструкции электрического генератора на основе мягких полимерных материалов. Интерес тут представляет тот факт, что по планам его вес составит около 10 килограмм, а вырабатывать электроэнергии сможет столько же, сколько вырабатывает традиционный генератор, используемый в турбинах ветрогенераторов и весом в 1 тонну.

Искусственные мышцы из нейлоновой лески

С обычной рыболовной леской из полимерного материала можно сделать занимательный опыт. Если вытянуть леску в длину и, зажав один конец, долго закручивать другой вокруг своей оси, то на леске образуются плотные кольца и она приобретает вид спиральной пружины. При нагревании эта пружина сокращается, а при охлаждении – удлиняется. Сборная команда новосибирских школьников исследовала свойства такой «искусственной мышцы» на Международном турнире юных физиков IYPT-2015. Интересно, что для количественного описания сокращения таких мышц можно использовать теорему Калугаряну – Уайта – Фуллера, ранее нашедшую применение в молекулярной биологии при описании сверхспирализованных ДНК

Искусственные мышечные волокна, способные многократно сокращаться под действием внешнего стимула и совершать механическую работу, в недалеком будущем могут найти применение в разнообразных приложениях, от экзоскелетов и промышленных роботов до микрофлюидных технологий. Разработки и исследования искусственных мышц ведутся по разным направлениям – металлы с памятью формы, электроактивные полимеры, жгуты из углеродных нанотрубок. Совсем недавно группа исследователей предложила использовать в качестве недорогих и весьма эффективных искусственных мышц спирали, свитые из обычной рыболовной лески (Hainеs еt al. , 2014). Такая искусственная мышца заметно сокращается при нагревании и вновь удлиняется при охлаждении. Изготовить спиральную мышцу из нейлоновой лески и исследовать ее свойства было предложено участникам Международного турнира юных физиков IYPT-2015 в задаче «Искусственная мышца».

Мышцы требуют тренировки

В наших экспериментах мы использовали леску диаметром 0,7 мм. Чтобы свернуть ее в спираль, мы закрепили электродрель в вертикальном положении, зажали один конец лески в патроне, а к другому концу прикрепили груз весом 3 Н – при таком весе леска не порвется, а свернется в однородную спираль. В процессе закрутки груз должен подниматься вверх, не проворачиваясь вокруг вертикальной оси, для чего на него устанавливается фиксатор.

Когда продольные волокна на поверхности лески завиваются примерно на 45° по отношению к продольной оси, леска начинает скручиваться в плотную спираль. Исходный отрезок лески длиной 1 м при скручивании превращается в 17 см такой спирали. При этом нейлон претерпевает столь сильную пластическую деформацию, что после снятия вращающего усилия спираль почти не раскручивается обратно. В принципе это новое состояние волокон можно закрепить, медленно нагрев леску до температуры, близкой к температуре плавления, а затем охладив ее.

Во избежание раскручивания спирали при последующих испытаниях мы составляли искусственную мышцу из двух спиралей с правой и левой завивкой, скрепляя их параллельно. Снизу к вертикально подвешенной мышце крепился поднимаемый груз. Для сокращения мышцы на ее верх­ний конец по трубке подавалась горячая вода, которая свободно стекала по спиралям вниз. Температура мышцы измерялась закрепленным на ней термодатчиком, удлинение – ультразвуковым датчиком перемещения.

Работа, совершаемая двигателем по перемещению груза против постоянной действующей силы, равна произведению величины силы и перемещения. Например, при перемещении свободно подвешенного груза весом 10 Н вверх (т.е. в направлении, противоположном вектору силы тяжести) на 0,03 м подъемник совершает работу 10 Н × 0,03 м = 0,3 Дж.

Измерив в нескольких последовательных испытаниях, как длина мышцы с подвешенным к ней грузом 10 Н зависит от температуры, мы обнаружили эффект тренировки: после первых циклов нагрева и охлаждения мышца становилась длиннее, но с четвертого раза циклы начинали воспроизводиться, так что тренированная мышца длиной 200 мм при нагреве от 20 до 80 °С каждый раз сокращалась на 30 мм, совершая работу в 0,3 Дж, а затем на столько же растягивалась при охлаждении. При нагреве спираль поглощала тепловую энергию 50 Дж, так что КПД мышцы составлял 0,06 %.

Твист и серпантин

Объясним теперь, почему нейлоновая спираль сокращается при увеличении температуры. Опыт показывает, что при нагреве сокращается и не закрученная леска с подвешенным грузом, хотя и не так заметно. Это сокращение связано с анизотропией материала, из которого изготовлена леска. Когда расплавленный нейлон пропускается через фильеру, длинные полимерные молекулы ориентируются вдоль лески. Нагруженные полимерные волокна при нагреве ведут себя так же, как и нити растянутой резины (Trеloar, 1975) – сокращаются, увеличивая энтропию системы.

Теперь рассмотрим леску, закрученную до состояния, в котором она начинает завиваться в спираль. Как уже было сказано, в этом состоянии продольные волокна на поверхности лески завиты примерно на 45° по отношению к оси. При нагреве лески закрученные волокна сокращаются, что приводит к раскручиванию лески. Для простоты будем считать, что если волокна сокращаются на 1 %, то и число оборотов, на которое раскручивается леска, составляет 1 % от полного числа оборотов, на которое она закручена.

Нам осталось разобраться с тем, как связаны между собой сокращение волокон и сокращение спиральной мышцы. Разработка простой математической модели, описывающей эту связь, составила важную часть нашего решения задачи. В итоге для описания сокращения спирали мы применили формулу Калугаряну – Уайта – Фуллера (CWF):

которая была доказана в дифференциальной геометрии (Călugărеanu, 1959; Whitе, 1969; Fullеr, 1971), а затем нашла применение в молекулярной биологии при описании сверхспирализованных ДНК (Fullеr, 1978; Pohl, 1980).

Число зацепления Lk (англ. – linking numbеr ) в этой формуле показывает, на сколько оборотов нижний конец лески был закручен по отношению к верхнему. Это число является топологическим инвариантом: оно остается неизменным при деформациях спирали, если нижний конец лески не раскручивается относительно верхнего.

Формула CWF говорит о том, что число зацепления можно разложить на два слагаемых – Tw (twisting ) и Wr (writhing ), сумма которых в нашем эксперименте остается неизменной. Число Tw характеризует закрутку волокон внутри лески (первичную); число Wr – внеш­нюю закрутку самой лески (вторичную), когда она образует пространственную спираль.

Чтобы лучше уяснить смысл этой формулы, возьмите тонкий пластиковый шнур, проведите маркером прямую линию на его поверхности, а затем спирально намотайте этот шнур на кусок толстой трубы так, чтобы проведенная линия была обращена наружу от трубы. Допустим, что шнур обернут вокруг трубы на 5 оборотов. В таком состоянии внутренняя закрутка волокон шнура Tw = 0, и число зацепления равно внешней закрутке: Lk = Wr = 5. Теперь возьмитесь за концы шнура двумя руками, снимите шнур с трубы, не разнимая рук, и растяните его. Шнур вытянулся по прямой, пространственные кольца исчезли, и теперь его внешняя закрутка Wr = 0. При этом шнур оказался перекрученным вокруг своей оси, и число оборотов его внутренней закрутки стало равно числу зацепления: Tw = Lk = 5.

В упомянутых выше математических работах была найдена математическая формула для вычисления внешней закрутки Wr в общем случае. Для равномерной спиральной закрутки эта формула сильно упрощается (Fullеr, 1978), приобретая вид

Wr = N ∙(1 – sin α),

где N – это число витков внешней спирали, α – угол подъема винтовой линии спирали.

Когда мы закручивали в спираль метровую леску, патрон дрели совершил 360 оборотов до образования барашков (петель) и 180 оборотов после образования барашков; при этом на каждый оборот возникал один новый барашек. Это означает, что внутренней закрутки лески при образовании барашков уже не происходило, так что готовая мышца характеризовалась числами Tw = 360, Wr = 180.

Опыт показывает, что незакрученная нейлоновая леска сокращается на 1,1 % при нагреве от 20 до 80° С. Будем считать, что это сокращение волокон приводит к уменьшению внутренней закрутки Tw также на 1,1 %, т. е. на 4 оборота. Тем самым внешняя закрутка Wr увеличивается на 4 оборота, т. е. на 2,2 %. Число витков спирали N при этом не меняется, значит на 2,2 % увеличивается значение выражения (1 – sin α), т. е. уменьшается величина угла α, за счет чего спираль и становится короче. В готовой спиральной мышце sin α ≈ 0,16, поэтому увеличение значения (1 – sin α) на 2,2 % приводит к уменьшению sin α на 13 %. Именно на столько и происходило сокращение высоты спирали в нашем эксперименте.

Конечно, принятая модель – достаточно грубая, но она дает результаты, согласующиеся с экспериментом. Ее основным достоинством является ее простота: вместо того чтобы описывать структуру волокон лески, мы оперируем легко подсчитываемыми в опыте числами Tw, Wr и Lk. Вся грубость модели заключается в предположении о том, что относительное уменьшение внутренней закрутки спирали равно относительному сокращению волокон незакрученной лески при таком же изменении температуры. Это предположение можно было бы проверить в косвенном эксперименте с леской, закрученной до такого состояния, когда на ней вот-вот начнут образовываться барашки, и зафиксированной в этом состоянии за счет нагрева до температуры, близкой к температуре плавления нейлона, и последующего охлаждения.

Литература

Călugărеanu G. L’ intégral dе Gauss еt l’analysе dеs noеuds tridimеnsionnеls // Rеv. Math. Purеs Appl. 1959. V. 4. P. 5–20.

Chеrubini A., Morеtti G, Vеrtеchy R., Fontana M. Еxpеrimеntal charactеrization of thеrmally-activatеd artificial musclеs basеd on coilеd nylon fishing linеs // AIP Advancеs. 2015. V. 5. Doc. 067158.

Hainеs C. S., Lima M. D., Na Li еt al. Artificial musclеs from fishing linе and sеwing thrеad // Sciеncе. 2014. V. 343. P. 868–872.

Fullеr F. B. Thе writhing numbеr of a spacе curvе // Proc. Nat. Acad. Sci. USA. 1971. V. 68. P. 815–819.

Fullеr F. B. Dеcomposition of thе linking numbеr of a closеd ribbon: A problеm from molеcular biology // Proc. Nat. Acad. Sci. USA. 1978. V. 75. P. 3557–3561.

Pohl W. F. DNA and diffеrеntial gеomеtry // Math. Intеlligеncеr. 1980. V. 3. P. 20–27.

Trеloar L. R. G. Thе physics of rubbеr еlasticity. Oxford univеrsity prеss, 1975.

Whitе J. H. Sеlf-linking and thе Gauss intеgral in highеr dimеnsions // Am. J. Math. 1969. V. 91. P. 693–728.

Американские учёные или Университета Далласа (что в штате Техас), профессор Ray Baughman и его научная группа – научились «плести» искусственные мышечные волокна, взятые из обычной капроновой рыболовной лески - пополам с такой же обычной ниткой.

Технология, которую запатентовал Ray Baughman, на удивление проста, но о ней чуть позже.

Полученные техасцами искусственные мышцы из полимерной нити- сильны и дёшевы. Учёные собираются использовать эти новые искусственные мышечные волокна для двух основных целей:

  • при строительстве роботов грузо-подъёмщиков,
  • и для создания экзоскелетов в самых различных сферах применения.

Искусственные мышечные волокна Ray Baughman из университета Далласа - по всем показателям - намного превосходят природные, человеческие.

Так, искусственная мышца из рыболовной лески – может сокращаться на целых 50 % от своей исходной длины.

Человеческая же мышца умеет сокращаться лишь на 20 процентов от своей исходной длины...

(Напомним, что работу производит именно - сокращающаяся мышца, отсюда и такое внимание именно к этой детали).

По грубым подсчётам, искусственные мышцы на два порядка успешней -в подъёме весов и в выработке механической энергии в целом. Американцы также считают, что создали мышцу «с мощностью реактивного двигателя», в силу того, что на один килограмм веса такая мышца развивает мощность – в семь и более лошадиных сил.

Искусственная мышца: Всё гениальное – просто

Полимерная нить, та, которая и идёт на изготовление лески для рыболовов, скручивается в спираль. Под воздействием температуры, спираль из лески то скручивается (сокращается), то раскручивается (расслабляется).

При нагреве – искусственная мышца - растягивается, при остывании – скручивается. И – наоборот.

Собственно, удивительное в изобретении Ray Baughman – это то самое «наоборот».

В искусственной мышце – сплетены шесть полимерных нитей, отличающихся друг от друга – толщиной.

Успешный эксперимент учёных показал, что углеродные нанотрубки (из которых раньше пытались делать искусственные мышцы) это тупиковый путь развития данной технологии. Кроме этого - в область технологий «прошлого века» сразу же уходят – гидравлика и пневматика. Робот с искусственными мышцами из рыболовной лески работает – бесшумно, дёшево и эффективно.

Также по словам учёных – изготовить искусственную мышцу настолько просто, что с этим справится и школьник в рамках лабораторной по физике. Нужно лишь иметь с собой – две канцелярские скрепки, дрель и … саму леску!

Добро пожаловать в век киборгов-силачей?..

Искусственная мышца является общим термином, используемым для исполнительных механизмов, материалов или устройств, которые имитируют естественную мышцу и может обратимо контракт, расширяющие или вращают в течение одного компонента из - за внешний стимул (например, как напряжение, ток, давление или температура). Три основные реакции приведения в действии - сокращение, расширение, и вращение - могут быть объединены вместе в едином компоненте для производства других типов движений (например, изгиб, стягивание одну стороны материала, расширяя другую сторону). Обычные двигатели и пневматические линейные или поворотные приводы не квалифицируются как искусственные мышцы, потому что есть более чем один компонент участвует в приведении.

Благодаря высокой гибкости, универсальность и мощности к весу по сравнению с традиционными жесткими приводами, искусственные мышцы имеют потенциал, чтобы быть весьма разрушительной новой технологией . Хотя в настоящее время ограниченное применение, технология может иметь широкое применение в будущем в промышленности, медицине, робототехнике и многих других областях.

Сравнение с естественными мышцами

Хотя нет никакой общей теории, которая позволяет приводы можно сравнить, есть «критерии мощности» для технологий искусственных мышц, которые позволяют спецификацию новых технологий привода в сравнении с естественными мышечными свойствами. Таким образом, критерии включают стресс , напряжение , скорость деформации , жизненный цикл, и модуль упругости . Некоторые авторы рассматривают другие критерии (Huber и др., 1997), такой как плотность привода и разрешение деформации. По состоянию на 2014 год, самые мощные искусственные мышечные волокна в существовании могут предложить сторицей увеличение мощности по эквивалентной длине естественных мышечных волокон.

Исследователи измеряют скорость, плотность энергии , мощность и эффективность искусственных мышц; не один типа искусственной мышцы является лучшим во всех областях.

Типы

Искусственные мышцы можно разделить на три основные группы в зависимости от их механизма приведения в действие.

Электрическое поле приведения в действие

Электроактивные полимеры (ППМ) представляют собой полимеры, которые могут быть приведены в действие посредством применения электрических полей. В настоящее время наиболее известные включают в себя пьезоэлектрические EAPs полимеров, диэлектрические приводы (Deas), электрострикционные привитые эластомеры , жидкие кристаллические эластомеры (LCE) и сегнетоэлектрических полимеров. Хотя эти EAPs можно согнуть, их низкая пропускная способность для движения крутящего момента в настоящее время ограничивает их полезность в качестве искусственных мышц. Более того, без принятого стандартного материала для создания устройств EAP, коммерциализация остается непрактичной. Однако, значительный прогресс был достигнут в технологии EAP с 1990 года.

Ion на основе приведения в действие

Ионные ППМ представляют собой полимеры, которые могут быть приведены в действие посредством диффузии ионов в растворе электролита (в дополнение к применению электрических полей). Текущие примеры ионных электроактивных полимеров включают polyelectrode гели, иономерный полимер, металлический композиционные материалы (IPMC), проводящие полимеры и электрореологические жидкости (ERF). В 2011 году было показано, что скрученные углеродные нанотрубки также может быть приведен в действие путем приложения электрического поля.

Электрическая мощность приведения в действие

Химический контроль

Хемомеханических полимеры, содержащие группы, которые являются либо рН-чувствительных или служить в качестве селективного сайт распознавания для конкретных химических соединений могут служить в качестве исполнительных механизмов и датчиков. Соответствующие гели набухать или сжиматься обратимо в ответ на такие химические сигналы. Большое разнообразие элементов supramolulecular распознавания может быть введено в геле - образующей полимеры, которые могут связываться и использовать в качестве инициатора ионов металлов, различных анионов, аминокислот, углеводов и т.д. Некоторые из этих полимеров обладают механическим ответом только тогда, когда две различными химическими веществ или инициаторы присутствует, выполняя таким образом, как логические ворота. Такие полимеры хемомеханические перспективны также для [[адресной доставки лекарств | целевая доставка лекарств ]]. Полимеры, содержащие легкие поглощающие элементы могут служить в качестве фотохимический управляемых искусственных мышц.

Приложения

Искусственные технологии мышца имеют широкие возможности применения в биомиметических машинах, в том числе роботов, промышленные приводов и экзоскелетов . EAP на основе искусственных мышц предлагают сочетание легкого веса, низким энергопотреблением, устойчивость и маневренность для передвижения и манипуляции. Будущие устройства EAP будут иметь применение в аэрокосмической, автомобильной промышленности, медицине, робототехнике, механизмы артикуляции, развлечения, анимация, игрушки, одежда, тактильных и тактильных интерфейсов, контроля уровня шума, датчиков, генераторов и интеллектуальных структур.

Пневматические искусственные мышцы также обеспечивают большую гибкость, управляемость и легкость по сравнению с обычными пневматическими цилиндрами. Большинство приложений PAM предполагают использование McKibben подобных мышц. Тепловые исполнительные механизмы, такие как СМА имеют различную военную, медицинскую, безопасность и роботизированных приложений, и может, кроме того, можно использовать для получения энергии за счет механических изменений формы.

Чтение статьи займет: 6 мин.

Pulchritudo mundum servabit

(с латыни – красота спасет мир )

Независимо от действующего стандарта красоты тела человека, во все времена она пользовалась спросом. У красивых телоформ больше шансов удачно выйти замуж/жениться, расти в карьере, пользоваться популярностью и даже стать народным избранником… кино и театр, опять же. Естественно, обделенный стандартной красотой народ стремится хоть на немного приблизить свое «простенькое тельце» к эталону, терзая себя диетами, физическими нагрузками, затягиваясь в корсеты и, в крайнем варианте, общаясь по скайпу строго в режиме разговора без видео, или, в случае паршивой дикции, только перепиской. Но для современной индустрии силиконовых форм нет ничего невозможного!

За полвека разработаны пять поколений имплантатов «для коррекции красоты тела». Следует отметить, что абсолютно безопасной версии среди них не существует:

  • первое поколение (1960-1970 гг.) характеризовала прочная и толстая силиконовая оболочка с гладкой поверхностью, ее контуры можно было различить через кожу, при нажатии слышался хруст, схожий со звуком от сминаемого бумажного листа. Несмотря на толщину оболочки, ее наполнитель частично «пропотевал» наружу, вызывая частичное сморщивание тканей;
  • второе поколение (1970-1980 гг.) силиконовых имплантатов имели более тонкую оболочку и гладкую поверхность. Наполнителем, как и в первом поколении, служил силиконовый гель. Хруста они не издавали, но имели более высокую степень «пропотевания» и, что много хуже, часто рвались. Часть моделей имплантатов была покрыта губчатым материалом из микропенополиуретана, снижавшего вероятность воспаления и препятствовавшего смещению имплантата;
  • в оболочках третьего и четвертого поколений (созданы около 1985 г.) были учтены недостатки предыдущих моделей – текстура на поверхности, двойные стенки и двойная камера, с силиконовым гелем во внешней и солевым раствором во внутренней. Введение солевого раствора в нужном объеме позволяло корректировать форму имплантата после размещения «на месте». Два слоя наружных стенок препятствовали «пропотеванию», сводя его к минимуму. Разрывы имплантатов этих поколений редко, но случались;
  • пятое поколение (созданы около 1995 г.). Прочные, наполняемые силиконовым гелем с высокой межмолекулярной связью (когезией), не склонным к «пропотеванию». При перемене положения тела геометрия имплантатов не меняется под действием гравитации – наполнитель сохраняет память исходной формы. Однако 100% уверенности в их безопасности нет.

Наполнители силиконовых имплантатов:

  • жидкий силикон , по консистенции схож с растительным маслом;
  • желеобразный силиконовый гель со стандартной когезией . На ощупь выявить имплантат сложно, по плотности он соответствует живой ткани. Степень «пропотевания» низка, однако форму такой наполнитель хранит довольно слабо;
  • гель с высокой когезией , по консистенции схожий с мармеладом. Обладает крайне малой степенью деформации, не «пропотевает», но имеет высокую память формы, т.е. область тела в зоне имплантата может иметь неестественный вид;
  • гель со средней степенью когезии (soft touch), похожий на холодец. Память формы средняя, оболочка не «пропотевает»;
  • физиологический раствор (0,9% раствор поваренной соли в воде). Надежность имплантатов слабая, поскольку месяцев через девять с момента размещения в теле соль кристаллизуется, т.е. обретает частично твердую форму. Образующиеся кристаллы соли способны проткнуть оболочку имплантата.

В зависимости от зоны размещения имплантатам придется чаще овальная, реже – коническая форма. Во всех описанных ниже случаях применяются имплантаты не ниже третьего поколения.

Силиконовые груди . Задолго до появления первых хирургически модифицированных транссексуалов женщины отчаянно хотели улучшить форму своего бюста. В отсутствии иных вариантов, в ход шли различные ухищрения вроде набивного лифа и объемных кружев. Но они работали лишь до момента обнажения груди, а после… после конфуз был неизбежен. Попытку реконструировать молочные железы изнутри впервые предпринял чешский хирург Винсент Черни в 1895 году, используя жировую ткань пациентки.

Развитие киноиндустрии в начале XX века дало новый импульс в грудной имплантации. Хирурги искали оптимальный материал для увеличения женского бюста, заполняя его стеклянными шарами, жировой тканью, шерстью, свернутой в клубок полиэтиленовой лентой, пенопластом и даже, вероятно по аналогии со стеклом, шарами из слоновой кости. Среди перечисленных способов имплантации наиболее безвредной была жировая ткань самой пациентки, но новый бюст сохранял форму недолго – организм усваивал жир и груди обвисали больше, чем прежде.

Но формы кинодив не давали покоя крашеным блондинкам из США и Европы. Их логика была простой – если можно изменить цвет волос, то почему нельзя реконструировать грудь? К середине прошлого века объемы бюста увеличили порядка 50 000 женщин, в основном американок и японок (тружениц секс-индустрии из страны Восходящего Солнца). Они воспользовались новыми на тот момент материалами химической индустрии – губок из поливинила (из винила, как известно, грампластинки делали) и жидкого силикона (вводился инъекциями). Последствия были плачевны… груди настолько твердели, что приходилось спасать владелиц путем их полного удаления.

Силиконовые имплантаты в том виде, которые мы знаем сегодня, появились в 1961 году. Создала их американская корпорация Dow Corning – оболочка выполнялась из резины, наполнителем служил силиконовый гель. Спустя три года французская Arion выпускает свою версию силиконовых протезов, заполненных морской водой. В 80-х американские имплантаты сочли возможной причиной рака груди и к началу 90-х они были запрещены к массовому использованию. После шквала исков от владелиц силиконовых грудей Dow Corning выплатила более 3 миллиардов долларов компенсаций и подчистую разорилась.

Силиконовые ягодицы . Называется этот вид пластической операции глютеопластика. Цель использования имплантатов этой группы, как и в случае силиконовых грудей, связана с повышением эстетических характеристики тела – сделать плоское объемным.

По популярности среди представителей сильного и слабого полов ягодицы занимают второе место, а значит, их привлекательные параметры востребованы у потенциальных владельцев ягодичных имплантатов. Моду на оттопыренную попку среди женщин ввела Дженнифер Лопес – танцовщица, после киноактриса и певица. Пятая точка Джей Ло неизменно лидирует среди других «звездных ягодиц», чему способствует постоянная ее демонстрация.

Мне приходилось наблюдать в сети малоприятные видео с силиконовыми имплантатами в ягодицах, которые якобы можно было свободно провернуть под кожей. В действительности их правильная интеграция происходит под ягодичными мышцами, снаружи никак распознать, а уж тем более смещать имплантаты не получится.

Если груди с силиконовым наполнителем в основном пользуются популярностью у женщин, то силиконовые ягодицы одинаково привлекательны для обеих полов – ведь возрастное плоскопопие характерно и для мужчин и для женщин.

Силиконовые мышцы . Вспомним киногероев конца 80-х – брутальные, отчаянно накачанные парни класса «hasta la vista, babe», с лицом, не обезображенным мыслью. Шварценеггер, Сталлоне, Лунгрен, Скала Джонсон, Халк Хоган и многие другие – их всех прежде всего объединяли объемные, во множестве изобилующие мышцы по всему телу. Современные герои боевиков уже не те. В их черты лиц закрался интеллект, физические данные скорее на уровне medium – они стали играть свои роли, а не просто появляться в кадре грудой мышц с парой дежурных фраз на фоне антиударной белозубой улыбки.

Разумеется, мускулы киноидолов не имели естественно-природного происхождения, поскольку никакие тренировки сформировать столь выпуклые кубики и шары не позволят. Мужчины и женщины, твердо намеренные выделиться из серой массы землян впечатляющей мускулатурой, были вынуждены колоть, есть и пить химические препараты, искусственно усиливающие рост мышечных волокон и вызывающих приток крови в мускулы. Расходы на стероиды были весьма внушительны – от 25000-30000$ ежегодно. При этом объемные мышцы и реальная физическая сила не являлись синонимами – культурист способен поднять значительный вес на месте, но не способен перемещать вес, вполовину меньший поднятого, т.к. нет мышечной выносливости.

Современные актеры боевиков различного жанра приобрели удивительную способность менять объемы своего тела за считанные месяцы, что в прессе называется неким их физическим талантом и мастерством тренеров. В действительности, и с большой долей вероятности это можно утверждать, их тела тренированы не больше, чем у обычных людей, нагружающих свои мышцы лишь периодически. Заполучить рельефное тело гораздо проще при помощи силиконовых форм – имплантатов бицепса, кубиков на животе, дельтовых, икроножных мышц и пр. И при этом не случится никаких дефектов тканей и систем тела, позвоночнику не будет угрожать грыжа, а мышцам – растяжки и молочная кислота. Правда, имплантат может разорваться…

Представляю видео о двух наиболее известных в интернет-мире «имплантатных качках», считающих себя неотразимо прекрасными (я их мнения не разделяю)- британо-бразильца Родриго Алвеса и американца Джастина Джетлика: