Мышечная ткань особенности строения. Мышечная ткань: строение и функции

11 февраля 2016

Организм всех животных, в том числе и человека, состоит из четырех типов тканей: эпителиальной, нервной, соединительной и мышечной. О последней и пойдет речь в данной статье.

Разновидности мышечной ткани

Она бывает трех видов:

  • поперечно-полосатая;
  • гладкая;
  • сердечная.

Функции мышечных тканей разных видов несколько отличаются. Да и строение тоже.

Где находятся мышечные ткани в организме человека?

Мышечные ткани разных видов занимают различное местоположение в организме животных и человека. Так, из сердечной мускулатуры, как понятно из названия, построено сердце.

Из поперечно-полосатой мышечной ткани образуются скелетные мускулы.

Гладкие мышцы выстилают изнутри полости органов, которым необходимо сокращаться. Это, к примеру, кишечник, мочевой пузырь, матка, желудок и т.д.

Структура мышечной ткани разных видов различается. О ней поговорим подробнее дальше.

Как устроена мышечная ткань?

Она состоит из больших по размеру клеток — миоцитов. Они также еще называются волокнами. Клетки мышечной ткани обладают несколькими ядрами и большим количеством митохондрий — органоидов, отвечающих за выработку энергии.

Кроме того, строение мышечной ткани человека и животных предусматривает наличие небольшого количества межклеточного вещества, содержащего коллаген, который придает мышцам эластичность.

Давайте рассмотрим строение и функции мышечных тканей разных видов по отдельности.

Структура и роль гладкой мышечной ткани

Данная ткань контролируется вегетативной нервной системой. Поэтому человек не может сокращать сознательно мышцы, построенные из гладкой ткани.

Формируется она из мезенхимы. Это разновидность эмбриональной соединительной ткани.

Сокращается данная ткань намного менее активно и быстро, чем поперечно-полосатая.

Гладкая ткань построена из миоцитов веретеновидной формы с заостренными концами. Длина данных клеток может составлять от 100 до 500 микрометров, а толщина — около 10 микрометров. Клетки данной ткани являются одноядерными. Ядро расположено в центре миоцита. Кроме того, хорошо развиты такие органоиды, как агранулярная ЭПС и митохондрии. Также в клетках гладкой мышечной ткани присутствует большое количество включений из гликогена, которые представляют собой запасы питательных веществ.

Элементом, который обеспечивает сокращение мышечной ткани данного вида, являются миофиламенты. Они могут быть построены из двух сократительных белков: актина и миозина. Диаметр миофиламентов, которые состоят из миозина, составляет 17 нанометров, а тех, которые построены из актина — 7 нанометров. Существуют также промежуточные миофиламенты, диаметр которых составляет 10 нанометров. Ориентация миофибрилл продольная.

В состав мышечной ткани данного вида также входит межклеточное вещество из коллагена, которое обеспечивает связь между отдельными миоцитами.

Функции мышечных тканей этого вида:

  • Сфинктерная. Заключается в том, что из гладких тканей устроены круговые мышцы, регулирующие переход содержимого из одного органа в другой или из одной части органа в другую.
  • Эвакуаторная. Заключается в том, что гладкие мышцы помогают организму выводить ненужные вещества, а также принимают участие в процессе родов.
  • Создание просвета сосудов.
  • Формирование связочного аппарата. Благодаря ему многие органы, такие как, например, почки, удерживаются на своем месте.

Теперь давайте рассмотрим следующий вид мышечной ткани.

Поперечно-полосатая

Она регулируется соматической нервной системой. Поэтому человек может сознательно регулировать работу мышц данного вида. Из поперечно-полосатой ткани формируется скелетная мускулатура.

Данная ткань состоит из волокон. Это клетки, которые обладают множеством ядер, расположенных ближе к плазматической мембране. Кроме того, в них находится большое количество гликогеновых включений. Хорошо развиты такие органоиды, как митохондрии. Они находятся вблизи сократительных элементов клетки. Все остальные органеллы локализуются неподалеку от ядер и развиты слабо.

Структурами, благодаря которым поперечно-полосатая ткань сокращается, являются миофибриллы. Их диаметр составляет от одного до двух микрометров. Миофибриллы занимают большую часть клетки и расположены в ее центре. Ориентация миофибрилл продольная. Они состоят из светлых и темных дисков, которые чередуются, что и создает поперечную "полосатость" ткани.

Функции мышечных тканей данного вида:

  • Обеспечивают перемещение тела в пространстве.
  • Отвечают за передвижение частей тела друг относительно друга.
  • Способны к поддержанию позы организма.
  • Участвуют в процессе регуляции температуры: чем активнее сокращаются мышцы, тем выше температура. При замерзании поперечно-полосатые мышцы могут начать сокращаться непроизвольно. Этим и объясняется дрожь в теле.
  • Выполняют защитную функцию. Особенно это касается мышц брюшного пресса, которые защищают многие внутренние органы от механических повреждений.
  • Выступают в роли депо воды и солей.

Сердечная мышечная ткань

Данная ткань похожа одновременно и на поперечно-полосатую, и на гладкую. Как и гладкая, она регулируется вегетативной нервной системой. Однако сокращается она так же активно, как и поперечно-полосатая.

Состоит она из клеток, называющихся кардиомиоцитами.

Функции мышечной ткани данного вида:

  • Она всего одна: обеспечение передвижения крови по организму.

Мышечная ткань - это группа тканей животных и человека, главной функцией которых является сокращение, что, в свою очередь, обуславливает перемещение в пространстве организма или его частей. Этой функции соответствует строение главных элементов мышечной ткани, которые имеют удлиненную форму и продольную ориентацию миофибрилл, в состав которых входят сократительные белки - актин и миозин. Как и эпителиальная, мышечная ткань является сборной тканевой группой, поскольку ее главные составляющие развиваются из различных эмбриональных зачатков.
В зависимости от строения своего сократительного аппарата мышечная ткань подразделяется на поперечно-полосатую (скелетную) и гладкую ткани, состоящие из различных гистогенетических типов, отличающихся по строению. Общее представление о классификации мышечной ткани дает следующая схема:

Поперечно-полосатая мышечная ткань

Источником ее развития являются клетки миотомов, образующиеся из дорсальной мезодермы. Поперечно-полосатая мышечная ткань состоит из удлиненных образований - мышечных волокон, которые имеют вид цилиндров с заостренными концами. Волокна достигают 80 мкм в диаметре и 12 см в длину. В центре мышечных волокон содержатся многоядерные образования (симпласты), к которым снаружи прилегают клетки - миосателиты. Волокна ограничены сарколеммой, образованной базальной мембраной и плазмолеммой симпласт.
Миосателлиотоциты располагаются под базальной мембраной мышечного волокна так, что их плазмолемма касается плазмолеммы симпласт. Эти клетки представляют собой камбиальный резерв скелетной мышечной ткани, за счет которого осуществляется регенерация ее волокон.
Кроме плазмолеммы, миосимпласты включают в себя цитоплазму (саркоплазму) и многочисленные ядра, расположенные по периферии. В околоядерном участке расположена слабо развитая гранулярная эндоплазматическая сетка и комплекс Гольджи. Мышечное волокно с его оболочкой, нервными окончаниями, кровеносными и лимфатическими капиллярами называется мышечной единицей (Мион).
Характерной особенностью волокон скелетной мускулатуры является поперечная полосатость, обусловленная чередованием двухзаламывающих (анизотропных) А-дисков и однозаламывающих (изотропных) И-дисков. В состав дисков входят миофибриллы, которые образуют сократительных аппарат волокон. Миофибриллы состоят из упорядоченных нитей сократительных белков актина и миозина. Эти нити закрепляются поперечно расположенными телофрагмамы и мезофрагмамы,
которые состоят из других белков. Отрезок миофибриллы между соседними телофрагмамы называется саркомера. Он представляет собой морфофункциональные единицу сократительного аппарата волокна. В его средней части расположена мезофрагма (М-линия на продольных срезах). От мезофрагмы в сторону телофрагмы отходят толстые (около 11 нм в поперечнике) нити миозина, а от телофрагмы навстречу им - тонкие (около 5 нм) нити актина.
Миозиновые нити - главный компонент темных дисков, а актиновые нити - светлых дисков. В составе темного диска актиновые и миозиновые нити располагаются параллельно. Средний отрезок А-диска имеет только миозиновые нити и называется Н-полоской (светлой зоной).
Для удобства рассмотрения структуры сократительного аппарата мышечного волокна необходимо запомнить так называемую формулу саркомера, которая отражает последовательное размещение его основных компонентов и выглядит так: телофрагма +1 / 2 диска 1 + 1 / 2 диска А + полоска М + + 1 / 2 диска А + 1 / 2 диска И + телофрагма.
Цитолемму симпластичной части мышечного волокна на уровне телофрагм образует глубокие выпячивания - поперечные или Т-трубочки (от лат. Transversus - поперечный). Параллельно этим трубочкам расположенные расширенные участки канальцев агранулярной эндоплазматической сети (конечные цистерны), которые сопровождают их с двух сторон. Вместе с Т-трубочками они образуют триады.
В конечных цистернах агранулярнои эндоплазматической сети в расслабленном состоянии мышечного волокна аккумулируются ионы кальция. Под влиянием распространения по цитолемме волокна и Т-трубочкам потенциала действия ионы кальция выходят из конечных цистерн, поступающих в миофибрилл и, взаимодействуя с особыми ретикулярными белками - тропонином и тропомиозином, начинают активно сокращаться. При этом актином и миозином нити, взаимодействуя между собой, перемещаются навстречу друг другу. Актиновые нити заходят между миозиновыми, приближаются к М-линии, в связи с чем при сокращении мышечного волокна уменьшается ширина Н-полоски и Н-диска. Ширина А-диска остается при этом неизменной. (Строение разных функциональных типов мышечных волокон рассматривается в учебниках по гистологии).

Гладкая мышечная ткань

Гладкая мышечная ткань мезенхимального происхождения образует мышечные оболочки внутренних органов. Гладкие миоциты чаще имеют веретенообразную форму, длина их составляет от 15 до 500 мкм, а толщина - от 5 до 8 МНМ. Ядра клеток вытягиваются по длине. При сокращении клеток они могут набирать вид буравчика. Органеллы в этих клетках развиты мало. Цитолемму, вытягиваясь, образует многочисленные пиноцитозные пузырьки, которые передают внутрь клетки раздражение, что, в свою очередь, вызывает ее сокращение.
Сократительных аппарат гладких миоцитов (миофибрилл) состоит из тонких миофиламентов, образованных актином, и толстым, сформированным миозином. Миоциты ограничены базальной мембраной, а также коллагеновыми (ретикулярными) эластичными волокнами. Эти структурные компоненты гладкой мышечной ткани образуются гладкие миоциты. Эфферентная (моторная) иннервация гладких миоцитов осуществляется постганглионарными волокнами автономной нервной системы . Соседние миоцитов через отверстия в базальной мембране образуют друг с другом щелевидные сообщения (нексус), которые обеспечивают функциональные взаимодействия клеток.
Гладкая мышечная ткань эпидермального происхождения образована миоэпителиальными клетками, которые образуются из кожной мезодермы. Они имеют звездчатую (ведростчастую) форму и входят в состав потовых, молочных и слюнных желез. Расположены между эпителиальными клетками и базальной мембраной секреторных отделов желез и мелких выводных протоков, они, сокращаясь, способствуют выведению секрета.
Гладкая мышечная ткань неврального происхождения образуется в процессе эмбрионального развития глазного яблока из клеток стенки глазного бокала. Она входит в состав мышц радужки глазного яблока, которые расширяют или сужают зрачок.

А те, в свою очередь, из миоцитов - клеток веретеновидной формы. Сокращения мышц обеспечивают специальные органеллы мышечной ткани, называемые миофибриллами и миофиламентами. Этот процесс происходит благодаря взаимодействию входящих в их состав белков - актина и миозина. В результате организм оказывается способен к перемещению, а некоторые органы получают способность к перистальтике. Таким образом, данная ткань на сегодняшний день является одной из наиболее важных для человеческого организма. Без неё бы не удалось ни передвигаться, ни вообще жить. Данная разновидность ткани является настоящим произведением искусства, выполненным природой.

Для чего нужна мышечная ткань?

У неё имеется сразу несколько назначений. В первую очередь, естественно, необходимо отметить передвижение тела в пространстве. Человеческий организм под воздействием эволюционных преобразований постепенно получал возможность реализовывать данную функцию всё в большей и большей степени. Стоит отметить, что, говоря про мышечную ткань, нельзя не упомянуть и о том обстоятельстве, что из неё построены не только конечности, но и отдельные слои многочисленных органов.

Какой она бывает?

На сегодняшний день достоверно известно, что мышечная ткань бывает нескольких разновидностей. Речь идёт о поперечнополосатом и гладком её виде. Первая встречается как в верхних, так и в нижних конечностях. Здесь поперечнополосатая мышечная ткань обеспечивает продуманные движения. Дело в том, что её иннервация происходит благодаря высшим нервным центрам. Помимо конечностей, мышечная ткань такого типа располагается ещё в верхней трети глотки. Она помогает человеку проглатывать пищу. Из поперечнополосатых мышц состоит мимическая мускулатура, а также язык. Всем этим человек может управлять осмысленно. Если говорить о гладкой мускулатуре, то её функционирование не подчиняется воле человека. За её регуляцию отвечают совсем другие нервные центры. Несмотря на то, что ею нельзя управлять, она обладает исключительно важным значением для каждого. Дело в том, что такая ткань, как отмечалось ранее, входит в состав практически каждого органа. К примеру, в пищеварительной системе человека гладкая мускулатура обеспечивает перистальтику (последовательное сокращение, способствующее продвижению пищевых масс). Во многих полостных органах такая мышечная ткань является просто незаменимой. Дело в том, что здесь она обеспечивает возможность растяжения. Данная функция весьма важна для мочевого и желчного пузыря.

Особенности мышечной ткани

Мускулатура обладает одной весьма важной особенностью. Дело в том, что повреждение мягких тканей такого типа не проходит бесследно: пораженные ткани мышц практически никогда не замещаются аналогичными клетками. В результате, например, такого осложнения, как некроз мягких тканей, человек на всю оставшуюся жизнь может лишиться тех или иных своих способностей.

Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве всего организма в целом или его частей (пример – скелетная мускулатура) и движение органов внутри орг-ма (пример – сердце, язык, кишечник).

Св-вом изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной ф-цией.

Общая характеристика и классификация

Основные морфологические признаки элементов мышечных тканей - удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Гладкая мышечная ткань.

Эта ткань образована из мезенхимы. Клетки гладкомышечной ткани - миоциты вытянутой с заостренными концами веретеновидной формы, покрыты клеточной оболочкой. Миоцит - это одноядерная клетка. Палочковидное ядро занимает в клетке центральное положение. Оно содержит распыленный гетерохроматин и одно или два хорошо заметных ядрышка. Клеточный центр (цитоцентр) находится вблизи одной из поверхностей ядра. Остальные органеллы сконцентрированы у полюсов палочковидного ядра. Хорошо развиты митохондрии, комплекс Гольджи, гладкая ЭПС; незначительно выражены рибосомы, зернистая ЭПС. В цитоплазме миоцитов содержатся гранулы гликогена - энергетический резерв клетки.

Миоциты плотно прилегают друг к другу, образуя слои и группы, разделенные между собой рыхлой неоформленной соединительной тканью. В цитоплазме расположены миофибриллы, они идут по периферии клетки вдоль ее оси. Состоят из тонких нитей и являются сократительным элементом мышцы.

Снаружи мышечное волокно покрыто оболочкой - сарколеммой, состоящей из внутреннего и наружного слоев. Внутренний слой - это плазмолемма, которая аналогична оболочке других тканевых клеток. Наружный - соединительнотканный слой состоит из базальной мембраны и прилегающих к ней волокнистых структур. Плазмолемма образует систему узких канальцев, проникающих внутрь мышечного волокна.

Соединительнотканные волокна, расположенные снаружи базальной мембраны мышечного волокна, образуют эндомизий, который богат кровеносными сосудами и нервами. Эндомизий соединяется с перимизием - оболочкой, покрывающей группу мышечных волокон. Перимизий нескольких мышечных пучков соединяется с эпимизием - самой наружной соединительнотканной оболочкой, объединяющей несколько таких пучков в мышцу - орган, характеризующийся специфическим строением и функцией.

Встречается гладкая мышечная ткань в стенках желудка, кишечника, матки, мочевого пузыря, мочеточников, бронхов, а также в средних и крупных кровеносных сосудах. Деятельность гладких мышц регулируется ВНС. Мышечные сокращения не подчиняются воле человека и поэтому гладкую мышечную ткань называют непроизвольной мускулатурой.

Поперечнополосатая мышечная ткань.

Скелетная мышечная ткань - это сократительная ткань туловища, головы, конечностей, глотки, гортани, верхней половины пищевода, языка, жевательных мышц.

Формируется из миотомов сомитов мезодермы. Структурная единица - поперечнополосатое мышечное волокно. Имеет цилиндрическое тело, покрыто оболочкой - сарколемой, а цитоплазма называется - саркоплазмой, в которой находятся многочисленные ядра и миофибриллы. Каждая миофибрилла состоит из дисков имеющих разный химический состав. Миофибриллы являются сократительным аппаратом мышечного волокна.

Из поперечнополосатой мышечной ткани построена вся скелетная мускулатура. Мускулатура является произвольной, т.к. ее сокращение возникает под влиянием коры больших полушарий.

Мышечная ткань сердца.

Этот вид мышечной ткани образует среднюю оболочку сердца - миокард, по характеру сокращения относится к непроизвольной, так как не контролируется волей животного. Развивается она из висцерального листка спланхнатома - миоэпикардиальной пластинки.

Сердечная мышечная ткань состоит из мышечных клеток - кардиомиоцитов (сердечных миоцитов). Миоциты, соединяясь друг с другом своими концами по длинной оси клеток, формируют структуру, сходную с мышечным волокном.

Имеются два вида клеток: типичные сократительные клетки и атипичные сердечные миоциты , составляющие проводящую систему сердца.

Типичные мышечные клетки выполняют сократительную функцию; они прямоугольной формы, в центре находятся 1-2 ядра, миофибриллы расположены по периферии. Между соседними миоцитами имеются вставочные диски. С их помощью миоциты собираются в мышечные волокна, разделенные между собой тонковолокнистой соединительной тканью. Между соседними мышечными волокнами проходят соединительные волокна, которые обеспечивают сокращение миокарда, как единого целого.

Проводящая система сердца образована мышечными волокнами, состоящими из атипичных мышечных клеток . Они более крупные, чем сократительные, богаче саркоплазмой, но беднее миофибриллами, которые часто перекрещиваются. Ядра крупнее и не всегда находятся в центре. Волокна проводящей системы окружены густым сплетением нервных волокон.

textus muscularis ) называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон . Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина - при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией.Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

Первоначальные исследования изображений зависят от расположения опухоли

Саркома матки может вызвать кровотечение, воспаление или боль в области таза. Диагностические и промежуточные системы. Из-за того, что саркомы редки, многие врачи не консультировались с пациентами с саркомой или ухаживали за ними. Когда подозревается саркома, важно проконсультироваться с медицинской бригадой , знакомой с саркомой.

Для установления диагноза и наблюдения за типом саркомы жизненно важно сделать двухпозицию. Успешная биопсия требует знаний о саркомах и их лечении, и это лучше всего делать хирургу, который знаком с саркомой, и экзамен будет проводиться патологоанатомом, который имеет опыт работы с типами саркомы.

Свойства мышечной ткани

  1. Сократимость

Виды мышечной ткани

Гладкая мышечная ткань

Состоит из одноядерных клеток - миоцитов веретеновидной формы длиной 20-500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности . Эта мышечная ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть ее деятельность не управляется по воле человека). Входит в состав стенок внутренних органов : кровеносных и лимфатических сосудов , мочевыводящих путей , пищеварительного тракта (сокращение стенок желудка и кишечника).

Бифиз может выполняться посредством открытой процедуры или закрытой процедуры с использованием большой иглы для удаления ткани. Биопсию следует делать правильно, чтобы собрать достаточное количество ткани для получения диагноза, но не так много ткани, чтобы скомпрометировать окончательную резекцию опухоли. Как правило, предпочтительным методом является наименее инвазивный метод, позволяющий патологу дать окончательный диагноз.

Эта постановка также основана на размере опухоли следующим образом . В дополнение к этой официальной постановке, врачи также рассматривают другие функции, которые указывают на высокую вероятность рецидива. Пациенты с такими характеристиками считаются «высоко рискованными» и могут рассматриваться более агрессивно.

Поперечно-полосатая скелетная мышечная ткань

Состоит из миоцитов, имеющих большую длину (до нескольких сантиметров) и диаметр 50-100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование тёмных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть её деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц , а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы. Волокна длиной от 10 до 12 см.

Лечение саркомы мягких тканей. Учитывая редкость саркомы мягких тканей, лучше всего обращаться с пациентами в специализированном лечебном центре . Шведское исследование показало, что частота рецидивов в 2 раза выше у пациентов, которые не лечатся в специализированных центрах. Кроме того, исследования показали плохие результаты у пациентов, прибывших в специализированные медицинские центры после начальной операции. Конкретное лечение зависит от размера и местоположения опухоли, степени опухоли, независимо от ее распространения.

Лучевая терапия может быть выполнена до или после операции или во время операции с использованием брахитерапии. Исследования показали, что лучевая терапия предотвращает рецидив больше, чем если бы была сделана операция. Исследователи еще не могли признать, что профилактика рецидивов повышает выживаемость. До этой даты они не увеличивали выживаемость с помощью лучевой терапии.

Функции мышечной ткани

Двигательная. Защитная. Теплообменная. Так же можно выделить еще одну функцию - мимическую (социальную). Мышцы лица, управляя мимикой, передают информацию окружающим.

Примечания

Мышечная ткань (textus muscularis) обладает способностью сокращаться, укорачиваться, она осуществляет функции движения. Существуют три разновидности мышечной ткани: исчерченная (поперечнополосатая, скелетная), неисчерченная (гладкая) и сердечная. Наряду с этими разновидностями в организме человека выделяют мышечную ткань эпидер- мального происхождения (миоэпителиальные клетки) и нейтрального происхождения (миоциты мышцы, расширяющей и суживающей зрачок).

Также нет консенсуса относительно того, когда лучевая терапия должна использоваться для достижения наилучших результатов. Недавнее исследование в Канаде показало небольшое улучшение выживаемости в предоперационной повторной терапии, но это исследование имеет продолжение только 3 года. Канадское исследование также показало, что использование предоперационной лучевой терапии может привести к менее сильному заживлению области, затронутой хирургией. Испытания все еще ведутся, чтобы установить лучшее время для проведения лучевой терапии, но это может занять годы.

Исчерченная (поперечнополосатая, скелетная) мышечная ткань (textus muscularis stridtus, s. skeletdlis) образована цилиндрическими мышечными волокнами длиной от 1 до 40 мм и толщиной до 0,1 мм. Каждое волокно представляет собой комплекс, состоящий из миосимпласта и миосателлитоцитов, покрытых общей оболочкой - сарколеммой (от греч. sdrcos - мясо), укрепленной тонкими соединительнотканными волокнами, которая при световой микроскопии выглядит в виде тонкой темной полоски. Под сарколеммой мышечного волокна располагается множество ядер эллипсоидной формы, содержащих 1-2 ядрышка и большое количество элементов зернистой эндоплазматической сети. Центриоли отсутствуют. Примерно 2/3 сухой массы миосимпласта приходится на цилиндрические миофибриллы (рис. 25), проходящие через цитоплазму (саркоплазму). Между миофибриллами залегают многочисленные митохондрии с хорошо развитыми кристами и частички гликогена. Саркоплазма богата белком миоглобином, который подобно гемоглобину может связывать кислород.

Химиотерапию можно проводить до операции, чтобы уменьшить опухоль, чтобы обеспечить лучшую резекцию или после операции. Хирургия и лучевая терапия могут воздействовать только на небольшую область вокруг опухоли, в то время как основная цель химиотерапии - уничтожить любую раковую клетку в организме, которая не обнаружена. Эти клетки могут начать расти в других органах, чаще всего в легких.

Это: доксорубицин, ифосфамид, эпирубицин, гемцитабин и дакарбазин. Хотя у нас нет широкомасштабных контролируемых исследований, демонстрирующих, какое лечение дает наилучшие результаты, однако, более мелкие исследования показывают, что химиотерапия предлагает преимущества пациентам с высоким риском рецидива.

Рис. 25. Исчерченная (поперечнополосатая, скелетная) мышечная ткань: 1 - мышечное волокно; 2 - сарколемма; 3 - миофибриллы; 4 - ядра

В зависимости от толщины волокон и содержания в них миофибрилл и саркоплазмы различают красные и белые поперечнополосатые мышечные волокна. Красные волокна богаты саркоплазмой, миоглобином и митохондриями. Однако они самые тонкие, миофибрилл в них мало, они расположены группами. В красных волокнах окислительные процессы более интенсивны, чем в белых, выше активность сукцинатдегидрогеназы и больше гликогена. Белые волокна толстые, содержат меньше саркоплазмы, миоглобина и митохондрий, но миофибрилл в них больше и располагаются они равномерно. Структура и функция волокон неразрывно связаны. Так, белые волокна сокращаются быстрее, но быстрее устают. Красные способны сокращаться длительнее, долго оставаться в сокращенном (рабочем) состоянии. У человека мышцы содержат оба типа волокон. В зависимости от функции мышцы в ней преобладает тот или иной тип волокон.

Исследователи обнаружили, что удаление метастазов из легких через хирургию может значительно повысить выживаемость. Это непростая процедура, поэтому пациенты должны быть достаточно здоровыми, чтобы пережить хирургическую резекцию опухоли легкого . После первичного лечения пациенты должны обращаться к консультациям и обзорам один раз каждые 3-4 месяца, в течение 3 лет, затем каждые 6 месяцев в течение 2 лет, а затем ежегодно.

Абдоминальные саркомы следует сканировать каждые 3-6 месяцев в течение 3 лет, а затем ежегодно, потому что повторение гораздо труднее обнаружить в животе, используя только физическое обследование . Легочная рентгеновская или торакальная компьютерная томография может выполняться каждые 6-12 месяцев для мониторинга метастазов в легких.

Мышечные волокна имеют поперечную исчерченность: темные анизотропные диски (полоски А) чередуются со светлыми изотропными дисками (полоски I). Диск А разделен светлой зоной (полоска Н), в центре которой проходит мезофрагма (линия М). Диск I разделен темной линией Z (телофрагма). Мышечные волокна содержат сократительные элементы - миофибриллы, среди которых различают толстые (миозиновые) диаметром 10-15 нм и длиной 1,5 мкм, занимающие диск А, и тонкие (актиновые) диаметром 5-8 нм и длиной 1 мкм, лежащие в диске I и прикрепляющиеся к телофрагмам. Участок миофибриллы, расположенный между двумя телофрагмами, представляет собой саркомер - сократительную единицу длиной около 2,5 мкм (рис. 26). Благодаря тому

Также изучаются эффекты химиотерапии. Существуют клинические испытания, в которых используются новые исследователи, но с учетом небольшого числа случаев будет длительное время до получения окончательных результатов. Обработки, которые мы имеем сегодня, были усовершенствованы в ходе клинических испытаний, и многие новые способы продолжают изучаться. Поговорите со своим врачом о клинических испытаниях в этом районе.

Типы саркомы мягких тканей. Фибросаркома Злокачественная фиброзная гистиоцитома Липосаркома Рабдомиосаркома Лейомиосаркома Ангиосаркома Лимпангиосаркома Синовиальная клеточная саркома Нейрофибросаркома. Движение является одной из важнейших характеристик живых существ, его формы становятся разнообразными и очень сложными в животном мире, для которого оно характерно. Благодаря активным движениям животные приобретают большую независимость от изменений в окружающей среде . В этом смысле нервная и мышечная системы образуют функциональную единицу.

Рис. 26. Схема строения двух миофибрилл мышечного волокна: 1 - саркомер; 2 - полоска А (диск А); 3 - полоска H; 4 - линия М (мезофрагма) в середине диска А; 5 - полоска I (диск I); 6 - линия (телофрагма) в середине диска I; 7 - митохондрия; 8 - конечная цистерна; 9 - саркоплазматический ретикулум; 10 - поперечные трубочки (по В.Г. Елисееву и др.)

Функциональная структура полосатой мышцы. Мышечные волокна соединяются вместе соединительной тканью , расположенной вокруг саркомы, где она образует эндомизиум. Мышечные волокна сгруппированы в пучки, также окруженные конъюнктивной оболочкой, называемой перимизием. Тело мышцы, которое включает в себя все пучки мышечных волокон, также покрывается соединительной тканью, называемой эпимизием. Сухожилие - белый конец, очень сильный и нерастяжимый, цилиндрической или узкой ширины мышцы, с которой он был вставлен на кость.

Во время сильного сокращения мышц это соединение очень требовательно, и здесь чаще всего растягиваются растяжки и мышечные перерывы. Между двумя компонентами синаптическое пространство ок. 400 Å. Пресинаптический компонент содержит везикулы с ацетилхолином, химическим посредником, который передает импульс двигательного нерва.

что границы саркомеров всех миофибрилл одного волокна совпадают, возникает регулярная поперечная исчерченность, которая хорошо видна на продольных срезах мышечного волокна. На поперечных срезах мышечного волокна хорошо видны миофибриллы (myofibrilla) в виде темных округлых точек (пятен) на фоне светлой цитоплазмы.

На электронограмме хорошо видны более электронноплотные анизотропные и светлые изотропные диски, в них продольно идущие миофиламенты, осмиофильная линия Z и светлая зона (полоска Н), разделенная мезофрагмой, многочисленные митохондрии, элементы незернистой эндоплазматической сети. В расслабленной миофибрилле концы актиновых филаментов входят между миозиновыми, в сокращенной зоне перекрытия актиновых и миозиновых филаментов увеличиваются вплоть до полного исчезновения изотропного диска. Каждая миофибрилла окружена незернистой эндоплазматической сетью, состоящей из сетчатого и трубчатого элементов. Первые окружают центральную часть саркомера в виде ажурной сеточки, вторые охватывают большую часть саркомера в виде параллельных трубочек и расположены по обеим сторонам от сетчатых. Трубчатые элементы эндоплазматической сети переходят по обеим сторонам диска А в терминальные цистерны. На границе между дисками А и I сарколемма впячивается, образуя Т-трубочки (поперечные трубочки), которые разветвляются внутри волокна и анастомозируют только в горизонтальном направлении.

Постсинаптический компонент содержит многочисленные специфические холинергические рецепторы, к которым присоединен ацетилхолин, а также ферментные рецепторы, которые разрушают химический медиатор для нормальной синаптической передачи. Васкуляризация скелетных мышц очень богата, артерии проникают в мышцу в соединительной ткани между мышечными волокнами и параллельны им. В эндомизие имеется богатая капиллярная сеть, которая приносит кислородную кровь к мышечным волокнам. Венозная сетка несет мускулы продуктов углекислого газа и катаболизма.

На поверхности сарколеммы видны отверстия Т-трубочек. Две терминальные цистерны и поперечная трубочка контактируют между собой, образуя триады. Сети, окружающие саркомеры, сообщаются между собой.

Мышечное сокращение - это результат скольжения тонких (актиновых) филаментов относительно толстых (миозиновых), в результате чего длина филаментов изменяется.

Место проникновения в мышцы соматических и сенсорных волокон называется двигательной точкой; Как только внутри соединительной ткани мышцы, нервы делятся до уровня мышечных волокон. Нервы сенсорные нервы, ведущих информацию как проприоцептивная мышца на боли, напряжение мышц или положения сегменты мышцы и двигательные нервы, представленные аксонами мотонейронов а и у, что приводят заказы на движения добровольных или принудительный, где она заканчивается через нервно-мышечное соединение.

В микроскопической структуре поперечно-полосатого мышечного волокна выделяются следующие основные образования. Возбуждение и возбуждение. Это серия формирующей системы Инвагизации и в продольном направлении поперечных трубок, которые передают действие потенциал сарколеммы на миофибриллах.

В состав мышечного волокна, помимо миосимпласта, входят сателлитомиоциты (satellitomyocytus). Это уплощенные клетки, которые лежат на поверхности волокна под базальной мембраной. Крупное ядро этих клеток богаче хроматином, чем ядра миосимпластов. В отличие от последних, в клетке сателлитомиоцита имеется центросома, органелл немного. Сателлитомиоциты способны к синтезу ДНК и митотическому делению. Благодаря этому они являются стволовыми клетками поперечнополосатой мышечной ткани, которые участвуют в гистогенезе скелетной мускулатуры и ее регенерации.

Полосатый, состоящий из пучков или колонок диаметром 1 м, соединенных параллельно мышечному волокну. Он состоит из сариз или миофибрилл, который является сократительной мышцей мышцы. Миофибриллы составляют от нескольких сотен до нескольких тысяч мышечных волокон. Наблюдаемый в электронном микроскопе , каждый саркомер состоит из темного диска и окружен двумя прозрачными половинами дисков.

На чистом диске показаны только актиновые филаменты, а темный диск содержит миозин миофиламентов и актиновые микрофиламенты среди них. Одной прямой электрической стимуляции мышцы, или косвенно через моторный нерв, с постоянным током определенной интенсивности и продолжительности, вызывает мышечную секунду.

Неисчерченная (гладкая) мышечная ткань (textus musculdris nonstriatus) состоит из гладкомышечных клеток - миоцитов, которые располагаются

в стенках кровеносных, лимфатических сосудов и полых внутренних органов, в сосудистой оболочке глаза, в собственно коже. Гладкие миоциты - это удлиненные веретенообразные клетки длиной от 50 до 200 мкм, толщиной от 5 до 15 мкм, не имеющие поперечной исчерченности (рис. 27). Миоциты располагаются группами так, что их заостренные концы внедряются между двумя соседними клетками. Каждый миоцит окружен базальной мембраной, коллагеновыми и ретикулярными микрофибриллами, среди которых проходят эластические волокна. В зонах межклеточных контактов - нексусов базальная мембрана отсутствует. Удлиненное палочковидное ядро с четко видимым ядрышком достигает 10-25 мкм в длину, при сокращении клетки оно принимает форму што- пора. Клетка содержит продольно ориентированные миофиламенты. Лишь вблизи обоих полюсов ядра расположена лишенная миофиламентов цитоплазма, в которой залегают органеллы. Изнутри к цитолемме прилежат веретенообразные клеточные тельца (тельца прикрепления). Они располагаются и в цитоплазме миоцита. Прикрепительные тельца

Анализ сокращения мышц осуществляется путем графической гравировки явления с помощью устройств, называемых миографами, или с механическими, емкостными или индуктивными современными вставками. Это происходит, когда сжимающая мышца закрепляется на обеих конечностях. Таким образом, длина волокон не изменяется во время сокращения; Но происходит увеличение мышечного напряжения . Антигравитационные мышцы, которые сохраняют осанку, жевательные мышцы в процессе измельчения пищи, выполняют изометрические сокращения.

Изотоническое сжатие. Это делается мышцей, которая придает вес. Во время сжатия его длина уменьшается, а напряжение остается неизменным. Изотонические сокращения характерны для движения конечностей в процессе ходьбы, подъема постоянного веса . Освоительное сжатие. Это промежуточное функциональное проявление. Во время сокращения мышцы он сокращается, но с прогрессирующим увеличением напряжения. Экспериментальные сокращения сочетаются с предыдущими в процессе работы, когда превосходящая мышечная сила преодолевает растущую внешнюю силу.

Рис. 27. Строение неисчерченной (гладкой) мышечной ткани: 1 - миоцит; 2 - миофибриллы в саркоплазме; 3 - ядро миоцита; 4 - сарколемма; 5 - эндомизий; 6 - нерв; 7 - кровеносный капилляр (по И.В. Алмазову и Л.С. Сутулову)

(пластинки) являются эквивалентами Z-пластинок поперечнополосатых мышечных волокон, они образованы белком α-актинином. Пластинки представляют собой эллипсоидные тельца длиной до 3 мкм, толщиной 0,2-0,5 мкм, удаленные друг от друга на расстояние 1-3 мкм. Там, где находятся плотные прикрепительные тельца, микропиноцитозные пузырьки отсутствуют.

В цитоплазме гладких миоцитов находятся миофиламенты трех типов: тонкие актиновые диаметром 3-8 нм, которые прикрепляются к плотным тельцам; промежуточные миофиламенты толщиной около 10 нм, образующие пучки, которые соединяют между собой соседние плотные тельца; толстые короткие миозиновые филаменты диаметром около 15-17 нм.

Группа миоцитов, окруженных соединительной тканью, иннервируются обычно одним нервным волокном. Нервный импульс передается с одной мышечной клетки на другую по межклеточным контактам. Воз- буждение передается от одной клетки к другой через нексусы со скоростью 8-10 см/с. Однако в некоторых гладких мышцах (например, сфинктер зрачка) иннервируется каждый миоцит.

В расслабленном миоците между актиновыми филаментами расположены единичные короткие миозиновые. При сокращении актиновые


Рис. 28. Гладкая мышечная клетка (миоцит) в расслабленном (А) и сокращенном (Б) состояниях: 1 - ядро; 2 - плотные поля (прикрепительные тельца), прикрепленные к цитолемме; 3 - промежуточные филаменты (по А. Хэму и Д. Кормаку)

филаменты скользят по отношению друг к другу под влиянием миозина, подтягивая прикрепительные тельца, в результате чего цитолемма деформируется, плотные тельца сближаются, а участки, расположенные между ними, вздуваются (рис. 28). Движения одних плотных прикрепительных телец передаются другим промежуточными филаментами, что вызывает синхронное сокращение миоцита.

Гладкие мышцы совершают длительные тонические сокращения (например, сфинктеры полых органов, гладкие мышцы кровеносных сосудов) и относительно медленные движения, которые зачастую ритмичны. Глад- кие мышцы отличаются высокой пластичностью - после растяжения они долго сохраняют длину, которую получили в связи с растяжением.

Сердечная исчерченная мышечная ткань (textus muscularis cardiacus) которая по строению и функции отличается от скелетных мышц, состоит из сердечных миоцитов (кардиомиоцитов). По микроскопическому строению сердечная мышечная ткань похожа на скелетную (поперечнополосатая исчерченность). Однако сокращения сердечной мышцы


Рис. 29. Схема строения кардиомиоцита: 1 - базальная мембрана; 2 - окончание миопротофибрилл на цитолемме кардиомиоцита; 3 - вставочный диск между кардиомиоцитами; 4 - саркоплазматическая сеть; 5 - саркосомы (митохондрии); 6 - миопротофибриллы; 7 - диск А (анизотропный диск); 8 - диск I (изотропный диск); 9 - саркоплазма

(по В.Г. Елисееву и др.)

не подконтрольны сознанию человека, она иннервируется вегетативной нервной системой , подобно неисчерченной мышечной ткани.

Кардиомиоциты (myocytus cardiacus) - это клетки неправильной цилиндрической формы, длиной 100-150 мкм и диаметром 10-20 мкм (рис. 29). Каждый кардиомиоцит имеет 1-2 овальных удлиненных ядра, лежащих в центре и окруженных микрофибриллами, расположенными на периферии строго прямолинейно. На обоих полюсах ядра видны удлиненные зоны цитоплазмы, лишенной миофибрилл. Весьма характерны контакты двух соседних кардиомиоцитов, имеющих вид извилистых темных полосок , вставочных дисков, которые активно участвуют в передаче возбуждения от клетки к клетке. Клетки богаты митохондриями. Сарколемма кардиомиоцитов толщиной около 9 нм имеет множество микропиноцитозных инвагинаций, пузырьков. По мере старения человека в его кардиомиоцитах накапливается липофусцин.

Строение миофибрилл кардиомиоцитов аналогично таковому скелетных мышц. В периферических отделах кардиомиоцитов и между митохондриями находится множество частичек гликогена и элементов незернис- той эндоплазматической сети. В кардиомиоцитах имеется очень большое количество крупных митохондрий с хорошо развитыми кристами, которые располагаются группами между миофибриллами. На уровне Z-линий цитолемма кардиомиоцитов также формирует Т-трубочки, вблизи которых сосредоточены скопления цистерн незернистой эндоплазматической сети. Однако триады выражены менее четко, чем в скелетных мышцах.

Кардиомиоциты соединены между собой вставочными дисками, которые на продольном разрезе имеют вид ступенек. В этих участках кардиомиоциты соединяются между собой наподобие зубчатых швов чере- па. Сарколемма соседних клеток соединена с помощью десмосом, лентовидных поясков или пятен сцепления, к которым с обеих сторон прикрепляются актиновые филаменты. Поперечные участки расположены на месте Z-линий. Между кардиомиоцитами (в эндомизиуме) располагаются кровеносные капилляры.

Миоэпителиоциты (эктодермального происхождения) - многоотростчатые клетки, в цитоплазме которых имеются способные сокращаться филаменты, состоящие из мышечных белков. Миоэпителиоциты окружают начальные отделы молочных, потовых, слезных, слюнных желез и, сокращаясь, способствуют выведению секрета из клетки. Мионевроциты радужной оболочки глаза, образующие мышцы, суживающие и расширяющие зрачок, являются производными нейроэктодермы. Миоэпителиоциты и мионевроциты иннервируются вегетативной нервной системой.