Гамма петля физиология. Гамма-эфферентная система мышечного сокращения

Важность гамма-эфферентной системы подчеркивает тот факт, что 31% всех двигательных нервных волокон к мышцам представлены тонкими эфферентными волокнами типа А, а не толстыми двигательными волокнами типа А. Каждый раз, когда сигналы передаются от двигательной коры или от любой другой области головного мозга к альфа-мотонейронам, в большинстве случаев одновременно стимулируются гамма-мотонейроны, что называют коактивацией альфа- и гамма-мотонейронов.
Это ведет к одновременному сокращению экстрафузальных волокон скелетных мышц и интрафузальных волокон мышечных веретен.

Сокращение интрафузальных мышечных волокон одновременно с сокращением крупных мышечных волокон скелетных мышц имеет двойное значение. Во-первых, это удерживает длину рецепторной части мышечного веретена от изменений во время сокращения всей мышцы. Следовательно, коактивация сдерживает противодействие рефлекса с мышечных веретен мышечному сокращению. Во-вторых, это сохраняет соответствующую функцию демпфирования мышечного веретена, независимо от любых изменений длины мышцы.

Например , если бы мышечное веретено не сокращалось и не расслаблялось вместе с крупными мышечными волокнами, рецепторная часть веретена была бы то слишком свободна, то перерастянута, что не соответствует оптимальным условиям для функции веретена.

Гамма-эфферентная система возбуждается непосредственно сигналами из булъборетикулярной облегчающей области ствола мозга и опосредованно - импульсами, передаваемыми в бульборетикулярную область от: (1) мозжечка; (2) базалъных ганглиев; (3) коры большого мозга. О точных механизмах контроля гамма-эфферентной системы известно мало. Однако поскольку бульборетикулярная облегчающая область прежде всего связана с сокращениями антигравитационных мышц (а эти мышцы имеют очень высокую плотность мышечных веретен), считают, что особое значение гамма-эфферентный механизм имеет для демпфирования (сглаживания) движений разных частей тела во время ходьбы и бега.

Система мышечных веретен стабилизирует положение тела во время напряженной деятельности. Одной из наиболее важных функций системы мышечных веретен является стабилизация положения тела во время напряженной мышечной деятельности. Для этого бульборетикулярная облегчающая область и связанные с ней области мозгового ствола передают возбуждающие сигналы через гамма-нервные волокна к интрафузальным мышечным волокнам.

Это укорачивает концы веретен и растягивает их центральные рецепторные области, усиливая сенсорный сигнал. Однако если веретена одновременно активируются в скелетных мышцах, расположенных по обе стороны каждого сустава, рефлекторное возбуждение этих мышц также возрастает, обеспечивая в окружении сустава сильное напряжение мышц, противодействующих друг другу. В результате положение сустава становится очень устойчивым, и любой силе, которая пытается его нарушить, противодействуют чрезвычайно чувствительные рефлексы на растяжение, действующие с обеих сторон сустава.

Каждый раз, когда человек должен выполнять мышечную работу , которая требует тонкой и точной регулировки положения тела, возбуждение соответствующих мышечных веретен сигналами из бульборетикулярной облегчающей области ствола мозга стабилизирует положение основных суставов. Это очень помогает выполнению дополнительных тонких произвольных движений (пальцами или другими частями тела), необходимых для сложных двигательных манипуляций.

Сложные движения могут быть осуществлены только при условии, что в эффекторных импульсов постоянно вноситься поправки с учетом тех изменений, которые происходят каждое мгновение в мышце в процессе его сокращения. Поэтому мышечная система является источником многочисленной афферентной импульсации. Спинной мозг постоянно получает информацию о степени напряжения мышечных волокон и их длину.

Рецепторная часть анализатора движения представляет собой мышечные веретена и сухожильные органы Гольджи.

Мышечные веретена. В мышцах, в основном разгибателях, выполняющих антигравитационную функцию, является мышечные волокна, тонкие и короткие других. Они размещаются небольшими пучками (от 2 до 12 волокон) в соединительнотканной капсуле. Через свою форму подобные структуры получили название мышечных веретен (рис 4.8). Мышечные волокна, размещенные в капсуле, названные интрафузальных (лат. Fusus - веретено), тогда как обычные волокна, на долю которых приходится основная масса мышцы, названные экстрафузальных, или рабочими волокнами. Вероятно одним концом прикрепляется к перимизию экстрафузальных мышечного волокна, вторым - до сухожилия. Центральная часть интрафузальных волокна является собственно рецепторной частью.

Существует два типа интрафузальных мышечных волокон, которые отличаются по расположению ядер: ядра волокон с ядерным цепью и ядра волокон с ядерной сумкой. Очевидно, эти два типа волокон функционально отличаются.

Афферентная иннервация. В каждое веретено проникает толстое миелиновой нервное волокно; оно посылает веточку к каждому интрафузальных волокна и заканчивается на его средней части, спиралеобразно оплитае ее и создает так называемые аннуло-спиральные окончания. Эти афференты является волокнами 1а (Аа), а их окончания называются первичных чувствительных окончаний. Адекватным раздражителем для них является изменение и скорость изменения длины мышечного волокна (рис. 4.9). Часть веретен иннервируется афферентными волокнами группы II (Аb). Эти чувствительные волокна "обслуживают" исключительно интрафузальных волокна с ядерным цепью и называются вторичных сенсорных окончаний; располагаются они своими отростками периферично от анулоспиральних окончаний. их возбудимость ниже, а чувствительность к динамическим параметрам меньше.

Эфферентная иннервация интрафузальных мышечных волокон осуществляется нервными волокнами группы A-у. Нервная клетка, от которой они отходят, является γ-мотонейроном.

Рис. 4.8. Схема строения мышечного веретена (по Р. Шмидт, Г. Тевс, 1985)

Рис. 4.9. Схема осуществления миотатичного рефлекса

Сухожильные органы Гольджи - особые рецепторы, которые состоят из сухожильных нитей, отходящих примерно от 10 экстрафузальных мышечных волокон и фиксируются в сухожилий мышцы последовательно, в виляди цепи. Адекватным раздражителем для них является изменение напряжения мышцы.

В органы Гольджи подходят толстые миелиновые волокна группы и b (Αβ). В сухожильном органе они разветвляются на более тонкие многочисленные веточки и теряют миелин. Такие рецепторы распространенные в скелетных мышцах.

Характер возбуждения мышечных веретен и сухожильных органов зависит от их размещения: мышечные веретена соединяются параллельно, а сухожильные органы - последовательно относительно экстрафузальных мышечных волокон. Итак, как следствие, мышечные веретена воспринимают главным образом длину мышцы, а сухожильные органы - его напряжение.

Чувствительные окончания мышечных веретен могут возбуждаться не только под влиянием растяжения мышцы, но и в результате сокращения интрафузальных мышечных волокон при возбуждении γ-мотонейронов. Этот механизм называется γ-петли (рис. 4.10). При сокращении только интрафузальных волокон длина или напряжение мышцы не меняется, однако при этом растягивается центральная часть этих волокон и поэтому возбуждаются чувствительные окончания.

Таким образом, существует два механизма возбуждения мышечных веретен: 1) растяжения мышцы и 2) сокращение интрафузальных волокон; эти два механизма могут действовать синергично.

Нейронная организация спинного мозга

Нейроны спинного мозга образуют серое вещество в виде симметрично расположенных двух передних и двух задних рогов в шейном, поясничном и крестцовом отделах. В грудном отделе спинной мозг имеет, помимо названных, еще и боковые рога.

Задние рога выполняют главным образом сенсорные функции и содержат нейроны, передающие сигналы в вышележащие центры, в симметричные структуры противоположной стороны либо к передним рогам спинного мозга.

В переднихрогах находятся нейроны, дающие свои аксоны к мышцам. Все нисходящие пути центральной нервной системы, вызывающие двигательные реакции, заканчиваются на нейронах передних рогов.

Спинной мозг человека содержит около 13 млн. нейронов, из них 3 \% - мотонейроны, а 97 \% - вставочные. Функционально нейроны спинного мозга можно разделить на 5 основных групп:

1) мотонейроны, или двигательные, - клетки передних рогов, аксоны которых образуют передние корешки. Среди двигательных нейронов различают а-мотонейроны, передающие сигналы мышечным волокнам, и у -мотонейроны, иннервирующие внутриверетенные мышечные волокна;

2) к вставочным нейронам спинного мозга относятся клетки, которые в зависимости от хода отростков делятся на: стшальные, отростки которых ветвятся в пределах нескольких смежных сегментов, и интернейроны, аксоны которых проходят через несколько сегментов или даже из одного отдела спинного мозга в другой, образуя собственные пучки спинного мозга;

3) в спинном мозге имеются и проекционные интернейроны, формирующие восходящие пути спинного мозга. Интернейроны - нейроны, получающие информацию от сггинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;

4) симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;

5) ассоциативные клетки - нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами.

В средней зоне серого вещества (между задним и передним рогами) и на верхушке заднего рога спинного мозга образуется так называемое студенистое вещество (желатинозная субстанция Роланда) и выполняет функции ретикулярной формации спинного мозга.

Функции спинного мозга. Первая функция - рефлекторная. Спинной мозг осуществляет двигательные рефлексы скелетной мускулатуры относительно самостоятельно. Примерами некоторых двигательных рефлексов спинного мозга являются: 1) локтевой рефлекс - постукивание по сухожилию двуглавой мышцы плеча вызывает сгибание в локтевом суставе благодаря нервным импульсам, которые передаются через 5-6 шейные сегменты; 2) коленный рефлекс - постукивание по сухожилию четырехглавой мышцы бедра вызывает разгибание в коленном суставе благодаря нервным импульсам, которые передаются через 2-4-й поясничные сегменты. Спинной мозг участвует во многих сложных координированных движениях- ходьбе, беге, трудовой и спортивной деятельности и др.Спинной мозг осуществляет вегетативные рефлексы изменения функций внутренних органов - сердечно-сосудистой, пищеварительной, выделительной и других систем.
Благодаря рефлексам с проприорецепторов в спинном мозге производится координация двигательных и вегетативных рефлексов. Через спинной мозг осуществляются также рефлексы с внутренних органов на скелетные мышцы, с внутренних органов на рецепторы и другие органы кожи, с внутреннего органа на другой внутренний орган.
Вторая функция - проводниковая. Центростремительные импульсы, поступающие в спинной мозг по задним корешкам, передаются по коротким проводящим путям в другие его сегменты, а по длинным проводящим путям - в разные отделы головного мозга.
Основными длинными проводящими путями являются следующие восходящие и нисходящие пути.



9.УЧАСТИЕ СПИННОГО МОЗГА В РЕГУЛЯЦИИ МЫШЕЧНОГО ТОНУСА. РОЛЬ АЛЬФА И ГАММА МОТОНЕЙРОНОВ В ЭТОМ ПРОЦЕССЕ .

Функция поддержания мышечного тонуса обеспечивается по принципу обратной связи на различных уровнях регуляции организма Периферическая регуляция осуществляется с участием гамма-петли, в состав которой входят супраспинальные моторные пути, вставочные нейроны, нисходящая ретикулярная система, альфа- и гамма-нейроны.

Существует два типа гамма-волокон в передних рогах спинного мозга. Гамма-1-волокна обеспечивают поддержание динамического мышечного тонуса, т.е. тонуса, необходимого для реализации процесса движения. Гамма-2-волокна регулируют статическую иннервацию мышц, т.е. осанку, позу человека. Центральная регуляция функций гамма-петли осуществляется ретикулярной формацией через ретикулоспинальные пути. Основная роль в поддержании и изменении мышечного тонуса отводится функциональному состоянию сегментарной дуги рефлекса растяжения (миотатического, или проприоцептивного рефлекса). Рассмотрим его подробнее.

Рецепторным элементом его является инкапсулированное мышечное веретено. Каждая мышца содержит большое количество этих рецепторов. Мышечное веретено состоит из интрафузальных мышечных волокон (тонких) и ядерной сумки, оплетенной спиралевидной сетью тонких нервных волокон, представляющих собой первичные чувствительные окончания (анулоспинальная нить). На некоторых интрафузальных волокнах имеются также и вторичные, гроздевидные чувствительные окончания. При растяжении интрафузальных мышечных волокон первичные чувствительные окончания усиливают исходящую из них импульсацию, которая через быстропроводящие гамма-1-волокна проводится к альфа-большим мотонейронам спинного мозга. Оттуда, через также быстропроводящие альфа-1-эфферентные волокна, импульс идет к экстрафузальным белым мышечным волокнам, которые обеспечивают быстрое (фазическое) сокращение мышцы. От вторичных чувствительных окончаний, реагирующих на тонус мышцы, афферентная импульсация проводится по тонким гамма-2-волокнам через систему вставочных нейронов к альфа-малым мотонейронам, которые иннервируют тонические экстрафузальные мышечные волокна (красные), обеспечивающие поддержание тонуса и позы.

Интрафузальные волокна иннервируются гамма-нейронами передних рогов спинного мозга. Возбуждение гамма-нейронов, передаваясь по гамма-волокнам к мышечному веретену, сопровождается сокращением полярных отделов интрафузальных волокон и растяжением их экваториальной части, при этом изменяется исходная чувствительность рецепторов к растяжению (происходит снижение порога возбудимости рецепторов растяжения, и усиливается тоническое напряжение мышцы).

Гамма-нейроны находятся под влиянием центральных (супрасегментарных) воздействий, передающихся по волокнам, которые идут от мотонейронов оральных отделов головного мозга в составе пирамидного, ретикулоспинального, вестибулоспинального трактов.

При этом если роль пирамидной системы заключается преимущественно в регуляции фазических (т.е. быстрых, целенаправленных) компонентов произвольных движений, то экстрапирамидная система обеспечивает их плавность, т.е. преимущественно регулирует тоническую иннервацию мышечного аппарата. Так, по мнению J. Noth (1991), спастичность развивается после супраспинального или спинального поражения нисходящих двигательных систем при обязательном вовлечении в процесс кортикоспинального тракта .

В регуляции мышечного тонуса принимают участие и тормозные механизмы, без которых невозможно реципрокное взаимодействие мышц-антагонистов, а значит, невозможно и совершение целенаправленных движений. Они реализуются с помощью рецепторов Гольджи, расположенных в сухожилиях мышц, и вставочных клеток Реншоу, находящихся в передних рогах спинного мозга. Сухожильные рецепторы Гольджи при растяжении или значительном напряжении мышцы посылают афферентные импульсы по быстропроводящим волокнам 1б-типа в спинной мозг и оказывают тормозящее воздействие на мотонейроны передних рогов. Вставочные клетки Реншоу активизируются через коллатерали при возбуждении альфа-мотонейронов, и действуют по принципу отрицательной обратной связи, способствуя торможению их активности. Таким образом, нейрогенные механизмы регуляции мышечного тонуса многообразны и сложны.

При поражении пирамидного пути растормаживается гамма-петля, и любое раздражение путем растяжения мышцы приводит к постоянному патологическому повышению мышечного тонуса. При этом поражение центрального мотонейрона приводит к снижению тормозных влияний на мотонейроны в целом, что повышает их возбудимость, а так же на вставочные нейроны спинного мозга, что способствует увеличению числа импульсов, достигающих альфа-мотонейронов в ответ на растяжение мышцы .

В качестве других причин спастичности можно указать структурные изменения на уровне сегментарного аппарата спинного мозга, возникающие вследствие поражения центрального мотонейрона: укорочение дендритов альфа-мотонейронов и коллатеральный спрауттинг (разрастание) афферентных волокон, входящих в состав задних корешков.

Возникают так же и вторичные изменения в мышцах, сухожилиях и суставах. Поэтому страдают механико-эластические характеристики мышечной и соединительной ткани, которые определяют мышечный тонус, что еще больше усиливает двигательные расстройства.

В настоящее время повышение мышечного тонуса рассматривается как комбинированное поражение пирамидных и экстрапирамидных структур центральной нервной системы, в частности кортикоретикулярного и вестибулоспинального трактов. При этом среди волокон, контролирующих активность системы «гамма-нейрон – мышечное веретено», в большей степени обычно страдают ингибирующие волокна, тогда как активирующие сохраняют свое влияние на мышечные веретена.

Следствием этого является спастичность мышц, гиперрефлексия, появление патологических рефлексов, а также первоочередная утрата наиболее тонких произвольных движений .

Наиболее значимым компонентом мышечного спазма является боль. Болевая импульсация активирует альфа- и гамма-мотонейроны передних рогов, что усиливает спастическое сокращение мышцы, иннервируемой данным сегментом спинного мозга. В то же время, мышечный спазм, возникающий при сенсомоторном рефлексе, усиливает стимуляцию ноцицепторов мышцы. Так, по механизму отрицательной обратной связи формируется замкнутый порочный круг: спазм – боль – спазм – боль .

Помимо этого, в спазмированных мышцах развивается локальная ишемия, так как алгогенные химические вещества (брадикинин, простагландины, серотонин, лейкотриены и др.) оказывают выраженное действие на сосуды, вызывая вазогенный отек тканей. В этих условиях происходит высвобождение субстанции «Р» из терминалей чувствительных волокон типа «С», а также выделение вазоактивных аминов и усиление микроциркуляторных нарушений.

Интерес представляют также данные о центральных холинергических механизмах регуляции мышечного тонуса. Показано, что клетки Реншоу активируются ацетилхолином как через коллатерали мотонейрона, так и через ретикулоспинальную систему.

10. РЕФЛЕКТОРНАЯ ДЕЯТЕЛЬНОСТЬ ПРОДОЛГОВАТОГО МОЗГА,ЕГО РОЛЬ В РЕГУЛЯЦИИ МЫШЕЧНОГО ТОНУСА. ДЕЦЕРЕБРАЦИОННАЯ РИГИДНОСТЬ. Продолговатый мозг, так же как и спинной, выполняет две функции - рефлекторную и проводниковую. Из продолговатого мозга и моста выходят восемь пар черепных нервов (с V по XII) и он, так же как и спинной мозг, имеет прямую чувствительную и двигательную связь с периферией. По чувствительным волокнам он получает импульсы - информацию от рецепторов кожи головы, слизистых оболочек глаз, носа, рта (включая вкусовые рецепторы), от органа слуха, вестибулярного аппарата (органа равновесия), от рецепторов гортани, трахеи, легких, а также от интерорецепторов сердечно-сосудистой системы и системы пищеварения.Через продолговатый мозг осуществляются многие простые и сложнейшие рефлексы, охватывающие не отдельные метамеры тела, а системы органов, например системы пищеварения, дыхания, кровообращения.

Рефлеторная деятельность. Через продолговатый мозг осуществляются следующие рефлексы:

· Защитные рефлексы: кашель, чиханье, мигание, слезоотделение, рвота.

· Пищевые рефлексы: сосание, глотание, сокоотдение (секреция) пищеварительных желез.

· Сердечно-сосудистые рефлексы, регулирующие деятельность сердца и кровеносных сосудов.

· В продолговатом мозге находится автоматически работающий дыхательный центр, обеспечивающий вентиляцию легких.

· В продолговатом мозге расположены вестибулярные ядра.

От вестибулярных ядер продолговатого мозга начинается нисходящий вестибулоспинальный тракт, участвующий в осуществлении установочных рефлексов позы, а именно в перераспределении тонуса мышц. Бульбарная кошка ни стоять, ни ходить не может, но продолговатый мозг и шейные сегменты спинного обеспечирают те сложные рефлексы, которые являются элементами стояния и ходьбы. Все рефлексы, связанные с функцией стояния, называются установочными рефлексами. Благодаря им животное вопреки силам земного притяжения удерживает позу своего тела, как правило, теменем кверху.Особое значение этого отдела центральной нервной системы определяется тем, что в продолговатом мозге находятся жизненно важные центры - дыхательный, сердечно-сосудистый, поэтому не только удаление, а даже повреждение продолговатого мозга заканчивается смертью.
Помимо рефлекторной, продолговатый мозг выполняет проводниковую функцию. Через продолговатый мозг проходят проводящие пути, соединяющие двусторонней связью кору, промежуточный, средний мозг, мозжечок и спинной мозг.

Продолговатый мозг играет важную роль в осуществлении двигательных актов и в регуляции тонуса скелетных мышц. Влияния, исходящие из вестибулярных ядер продолговатого мозга, усиливают тонус мышц-разгибателей, что важно для организации позы.

Неспецифические отделы продолговатого мозга, наоборот, оказывают угнетающее влияние на тонус скелетных мышц, снижая его и в мышцах-разгибателях. Продолговатый мозг участвует в осуществлении рефлексов поддержания и восстановления позы тела, так называемых установочных рефлексов.

Децеребрационная ригидность представляет собой пластическое резко выраженное повышение тонуса всех мышц, функционирующих с сопротивлением силе тяжести (спастичность разгибателей), и сопровождается фиксацией в положении разгибания и ротации кнутри рук и ног. а также нередко опистотонусом. Это состояние называют еще апаллическим синдромом. В его основе лежит повреждение среднего мозга, особенно вклинение в тенториальное отверстие при супратенториальных процессах, прежде всего неоплазии в области височных долей, кровоизлиянии в мозг с прорывом крови в желудочки, тяжелых ушибах головного мозга, кровоизлиянии в ствол, энцефалите, аноксии, отравлениях. Патология может вначале проявляться в виде «церебральных судорог» и провоцироваться внешними раздражениями. При полном прекращении воздействия нисходящих импульсов в спинном мозге развивается спастичность в сгибателях. Ригидность является признаком поражения экстрапирамидной системы. Она наблюдается при различных этиологических вариантах синдрома паркинсонизма (сопровождаясь акинезией, феноменом «зубчатого колеса» и нередко тремором, которые сначала появляются с одной стороны) и при других дегенеративных заболеваниях, сопровождающихся паркинсонизмом, например оливопонтоцеребеллярной атрофии, ортостатической гипотензии, болезни Крейтцфельдта-Якоба и др.

Характерная поза при децеребрационной ригидности

Функция поддержания мышечного тонуса обеспечивается по принципу обратной связи на различных уровнях регуляции организма Периферическая регуляция осуществляется с участием гамма-петли, в состав которой входят супраспинальные моторные пути, вставочные нейроны, нисходящая ретикулярная система, альфа- и гамма-нейроны.

Существует два типа гамма-волокон в передних рогах спинного мозга. Гамма-1-волокна обеспечивают поддержание динамического мышечного тонуса, т.е. тонуса, необходимого для реализации процесса движения. Гамма-2-волокна регулируют статическую иннервацию мышц, т.е. осанку, позу человека. Центральная регуляция функций гамма-петли осуществляется ретикулярной формацией через ретикулоспинальные пути. Основная роль в поддержании и изменении мышечного тонуса отводится функциональному состоянию сегментарной дуги рефлекса растяжения (миотатического, или проприоцептивного рефлекса). Рассмотрим его подробнее.

Рецепторным элементом его является инкапсулированное мышечное веретено. Каждая мышца содержит большое количество этих рецепторов. Мышечное веретено состоит из интрафузальных мышечных волокон (тонких) и ядерной сумки, оплетенной спиралевидной сетью тонких нервных волокон, представляющих собой первичные чувствительные окончания (анулоспинальная нить). На некоторых интрафузальных волокнах имеются также и вторичные, гроздевидные чувствительные окончания. При растяжении интрафузальных мышечных волокон первичные чувствительные окончания усиливают исходящую из них импульсацию, которая через быстропроводящие гамма-1-волокна проводится к альфа-большим мотонейронам спинного мозга. Оттуда, через также быстропроводящие альфа-1-эфферентные волокна, импульс идет к экстрафузальным белым мышечным волокнам, которые обеспечивают быстрое (фазическое) сокращение мышцы. От вторичных чувствительных окончаний, реагирующих на тонус мышцы, афферентная импульсация проводится по тонким гамма-2-волокнам через систему вставочных нейронов к альфа-малым мотонейронам, которые иннервируют тонические экстрафузальные мышечные волокна (красные), обеспечивающие поддержание тонуса и позы.

Интрафузальные волокна иннервируются гамма-нейронами передних рогов спинного мозга. Возбуждение гамма-нейронов, передаваясь по гамма-волокнам к мышечному веретену, сопровождается сокращением полярных отделов интрафузальных волокон и растяжением их экваториальной части, при этом изменяется исходная чувствительность рецепторов к растяжению (происходит снижение порога возбудимости рецепторов растяжения, и усиливается тоническое напряжение мышцы).

Гамма-нейроны находятся под влиянием центральных (супрасегментарных) воздействий, передающихся по волокнам, которые идут от мотонейронов оральных отделов головного мозга в составе пирамидного, ретикулоспинального, вестибулоспинального трактов.

При этом если роль пирамидной системы заключается преимущественно в регуляции фазических (т.е. быстрых, целенаправленных) компонентов произвольных движений, то экстрапирамидная система обеспечивает их плавность, т.е. преимущественно регулирует тоническую иннервацию мышечного аппарата. Так, по мнению J. Noth (1991), спастичность развивается после супраспинального или спинального поражения нисходящих двигательных систем при обязательном вовлечении в процесс кортикоспинального тракта .

В регуляции мышечного тонуса принимают участие и тормозные механизмы, без которых невозможно реципрокное взаимодействие мышц-антагонистов, а значит, невозможно и совершение целенаправленных движений. Они реализуются с помощью рецепторов Гольджи, расположенных в сухожилиях мышц, и вставочных клеток Реншоу, находящихся в передних рогах спинного мозга. Сухожильные рецепторы Гольджи при растяжении или значительном напряжении мышцы посылают афферентные импульсы по быстропроводящим волокнам 1б-типа в спинной мозг и оказывают тормозящее воздействие на мотонейроны передних рогов. Вставочные клетки Реншоу активизируются через коллатерали при возбуждении альфа-мотонейронов, и действуют по принципу отрицательной обратной связи, способствуя торможению их активности. Таким образом, нейрогенные механизмы регуляции мышечного тонуса многообразны и сложны.

При поражении пирамидного пути растормаживается гамма-петля, и любое раздражение путем растяжения мышцы приводит к постоянному патологическому повышению мышечного тонуса. При этом поражение центрального мотонейрона приводит к снижению тормозных влияний на мотонейроны в целом, что повышает их возбудимость, а так же на вставочные нейроны спинного мозга, что способствует увеличению числа импульсов, достигающих альфа-мотонейронов в ответ на растяжение мышцы .

В качестве других причин спастичности можно указать структурные изменения на уровне сегментарного аппарата спинного мозга, возникающие вследствие поражения центрального мотонейрона: укорочение дендритов альфа-мотонейронов и коллатеральный спрауттинг (разрастание) афферентных волокон, входящих в состав задних корешков.

Возникают так же и вторичные изменения в мышцах, сухожилиях и суставах. Поэтому страдают механико-эластические характеристики мышечной и соединительной ткани, которые определяют мышечный тонус, что еще больше усиливает двигательные расстройства.

В настоящее время повышение мышечного тонуса рассматривается как комбинированное поражение пирамидных и экстрапирамидных структур центральной нервной системы, в частности кортикоретикулярного и вестибулоспинального трактов. При этом среди волокон, контролирующих активность системы «гамма-нейрон – мышечное веретено», в большей степени обычно страдают ингибирующие волокна, тогда как активирующие сохраняют свое влияние на мышечные веретена.

Следствием этого является спастичность мышц, гиперрефлексия, появление патологических рефлексов, а также первоочередная утрата наиболее тонких произвольных движений .

Наиболее значимым компонентом мышечного спазма является боль. Болевая импульсация активирует альфа- и гамма-мотонейроны передних рогов, что усиливает спастическое сокращение мышцы, иннервируемой данным сегментом спинного мозга. В то же время, мышечный спазм, возникающий при сенсомоторном рефлексе, усиливает стимуляцию ноцицепторов мышцы. Так, по механизму отрицательной обратной связи формируется замкнутый порочный круг: спазм – боль – спазм – боль .

Помимо этого, в спазмированных мышцах развивается локальная ишемия, так как алгогенные химические вещества (брадикинин, простагландины, серотонин, лейкотриены и др.) оказывают выраженное действие на сосуды, вызывая вазогенный отек тканей. В этих условиях происходит высвобождение субстанции «Р» из терминалей чувствительных волокон типа «С», а также выделение вазоактивных аминов и усиление микроциркуляторных нарушений.

Интерес представляют также данные о центральных холинергических механизмах регуляции мышечного тонуса. Показано, что клетки Реншоу активируются ацетилхолином как через коллатерали мотонейрона, так и через ретикулоспинальную систему.

M.Schieppati и соавт., (1989) установили, что фармакологическая активация центральных холинергических систем значительно снижает возбудимость альфа-мотонейронов путем повышения активности клеток Реншоу.

В последние годы исследователи регуляции мышечного тонуса придают огромное значение роли нисходящих адренергических супраспинальных путей, начинающихся в области голубого пятна. Анатомически эти образования тесно связаны со спинальными структурами, особенно с передними рогами спинного мозга. Норадреналин, высвобождаемый с терминалей бульбоспинальных волокон, активизирует адренорецепторы, располагающиеся во вставочных нейронах, первичных афферентных терминалях и мотонейронах и воздействует одновременно на альфа- и бета-адренорецепторы в спинном мозге (D.Jones et al., 1982). К ядерным образованиям ретикулярной формации ствола подходят многочисленные аксоны болевой чувствительности. На основе информации, поступающей в ретикулярную формацию ствола головного мозга, выстраиваются соматические и висцеральные рефлексы. От ядерных образований ретикулярной формации формируются связи с таламусом, гипоталамусом, базальными ядрами и лимбической системой, которые обеспечивают реализацию нейроэндокринных и аффективных проявлений боли, что особенно важно при хронических болевых синдромах .

В итоге формирующийся порочный круг включает в себя мышечный спазм, боль, локальную ишемию, дегенеративные изменения, которые самоподдерживают друг друга, усиливая первопричину патологических изменений.

Следует учитывать, что чем больше компонентов этого порочного круга становятся мишенями при лечении, тем выше вероятность его успеха. Поэтому современными требованиями к миорелаксирующей терапии являются: мощность миорелаксирующего действия, его селективность, наличие противосудорожного и антиклонического эффектов, мощность анальгетического действия, а так же безопасность и наличие широкого терапевтического диапазона доз препарата.

Согласно современным представлениям, большинство миорелаксантов воздействуют на трансмиттеры или нейромодуляторы ЦНС. Воздействие может включать супрессию возбуждающих медиаторов (аспартат и глутамат) и/или усиление тормозных процессов (ГАМК, глицин).